dataset_wrappers.py 4.03 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
5
6
7
8
9
import math
from collections import defaultdict

import numpy as np

from mmdet.datasets import DATASETS


# Modified from https://github.com/facebookresearch/detectron2/blob/41d475b75a230221e21d9cac5d69655e3415e3a4/detectron2/data/samplers/distributed_sampler.py#L57 # noqa
10
@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
class RepeatFactorDataset(object):
    """A wrapper of repeated dataset with repeat factor.

    Suitable for training on class imbalanced datasets like LVIS. In each
    epoch, an image may appear multiple times based on its "repeat factor".
    The repeat factor for an image is a function of the frequency the rarest
    category labeled in that image. The "frequency of category c" in [0, 1]
    is defined as the fraction of images in the training set (without repeats)
    in which category c appears.
    This wrapper will finally be merged into LVIS dataset.

    See https://arxiv.org/abs/1908.03195 (>= v2) Appendix B.2.
    Args:
        dataset (:obj:`Dataset`): The dataset to be repeated.
        repeat_thr (float): frequency threshold below which data is repeated.
    """

    def __init__(self, dataset, repeat_thr):
        self.dataset = dataset
        self.repeat_thr = repeat_thr
        self.CLASSES = dataset.CLASSES

        repeat_factors = self._get_repeat_factors(dataset, repeat_thr)
        repeat_indices = []
        for dataset_index, repeat_factor in enumerate(repeat_factors):
            repeat_indices.extend([dataset_index] * math.ceil(repeat_factor))
        self.repeat_indices = repeat_indices

        flags = []
        if hasattr(self.dataset, 'flag'):
            for flag, repeat_factor in zip(self.dataset.flag, repeat_factors):
                flags.extend([flag] * int(math.ceil(repeat_factor)))
            assert len(flags) == len(repeat_indices)
        self.flag = np.asarray(flags, dtype=np.uint8)

    def _get_repeat_factors(self, dataset, repeat_thr):
        # 1. For each category c, compute the fraction # of images
        # that contain it: f(c)
        category_freq = defaultdict(int)
        for idx, img_info in enumerate(dataset.data_infos):
            if 'category_ids' in img_info:
                cat_ids = set(img_info['category_ids'])
            elif 'gt_names' in img_info:
                cat_ids = set([
                    gt for gt in img_info['gt_names']
                    if gt in dataset.class_names
                ])
            else:
                labels = dataset.get_ann_info(idx)['labels']
                cat_ids = set([label for label in labels])
            for cat_id in cat_ids:
                category_freq[cat_id] += 1
        num_images = len(dataset)
        for k, v in category_freq.items():
            category_freq[k] = v / num_images

        # 2. For each category c, compute the category-level repeat factor:
        #    r(c) = max(1, sqrt(t / f(c)))
        category_repeat = {
            cat_id: max(1.0, math.sqrt(repeat_thr / cat_freq))
            for cat_id, cat_freq in category_freq.items()
        }

        # 3. For each image I, compute the image-level repeat factor:
        #    r(I) = max_{c in I} r(c)
        repeat_factors = []
        for idx, img_info in enumerate(dataset.data_infos):
            if 'category_ids' in img_info:
                cat_ids = set(img_info['category_ids'])
            elif 'gt_names' in img_info:
                cat_ids = set([
                    gt for gt in img_info['gt_names']
                    if gt in dataset.class_names
                ])
            else:
                labels = dataset.get_ann_info(idx)['labels']
                cat_ids = set([label for label in labels])

            if len(cat_ids) == 0:
                repeat_factor = 1
            else:
                repeat_factor = max(
                    {category_repeat[cat_id]
                     for cat_id in cat_ids})
            repeat_factors.append(repeat_factor)
        return repeat_factors

    def __getitem__(self, idx):
        ori_index = self.repeat_indices[idx]
        return self.dataset[ori_index]

    def __len__(self):
        return len(self.repeat_indices)