base_3d_dense_head.py 16.1 KB
Newer Older
1
2
3
4
5
6
# Copyright (c) OpenMMLab. All rights reserved.
from abc import ABCMeta, abstractmethod
from typing import List, Optional, Tuple

import numpy as np
import torch
7
from mmdet.models.utils import select_single_mlvl
8
from mmengine.config import ConfigDict
9
10
from mmengine.model import BaseModule, constant_init
from mmengine.structures import InstanceData
11
12
from torch import Tensor

zhangshilong's avatar
zhangshilong committed
13
14
15
16
from mmdet3d.models.layers import box3d_multiclass_nms
from mmdet3d.structures import limit_period, xywhr2xyxyr
from mmdet3d.structures.det3d_data_sample import SampleList
from mmdet3d.utils.typing import InstanceList, OptMultiConfig
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114


class Base3DDenseHead(BaseModule, metaclass=ABCMeta):
    """Base class for 3D DenseHeads.

    1. The ``init_weights`` method is used to initialize densehead's
    model parameters. After detector initialization, ``init_weights``
    is triggered when ``detector.init_weights()`` is called externally.

    2. The ``loss`` method is used to calculate the loss of densehead,
    which includes two steps: (1) the densehead model performs forward
    propagation to obtain the feature maps (2) The ``loss_by_feat`` method
    is called based on the feature maps to calculate the loss.

    .. code:: text

    loss(): forward() -> loss_by_feat()

    3. The ``predict`` method is used to predict detection results,
    which includes two steps: (1) the densehead model performs forward
    propagation to obtain the feature maps (2) The ``predict_by_feat`` method
    is called based on the feature maps to predict detection results including
    post-processing.

    .. code:: text

    predict(): forward() -> predict_by_feat()

    4. The ``loss_and_predict`` method is used to return loss and detection
    results at the same time. It will call densehead's ``forward``,
    ``loss_by_feat`` and ``predict_by_feat`` methods in order.  If one-stage is
    used as RPN, the densehead needs to return both losses and predictions.
    This predictions is used as the proposal of roihead.

    .. code:: text

    loss_and_predict(): forward() -> loss_by_feat() -> predict_by_feat()
    """

    def __init__(self, init_cfg: OptMultiConfig = None) -> None:
        super().__init__(init_cfg=init_cfg)

    def init_weights(self) -> None:
        """Initialize the weights."""
        super().init_weights()
        # avoid init_cfg overwrite the initialization of `conv_offset`
        for m in self.modules():
            # DeformConv2dPack, ModulatedDeformConv2dPack
            if hasattr(m, 'conv_offset'):
                constant_init(m.conv_offset, 0)

    def loss(self, x: Tuple[Tensor], batch_data_samples: SampleList,
             **kwargs) -> dict:
        """Perform forward propagation and loss calculation of the detection
        head on the features of the upstream network.

        Args:
            x (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.
            batch_data_samples (List[:obj:`Det3DDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.

        Returns:
            dict: A dictionary of loss components.
        """
        outs = self(x)

        batch_gt_instances_3d = []
        batch_gt_instances_ignore = []
        batch_input_metas = []
        for data_sample in batch_data_samples:
            batch_input_metas.append(data_sample.metainfo)
            batch_gt_instances_3d.append(data_sample.gt_instances_3d)
            batch_gt_instances_ignore.append(
                data_sample.get('ignored_instances', None))

        loss_inputs = outs + (batch_gt_instances_3d, batch_input_metas,
                              batch_gt_instances_ignore)
        losses = self.loss_by_feat(*loss_inputs)
        return losses

    @abstractmethod
    def loss_by_feat(self, **kwargs) -> dict:
        """Calculate the loss based on the features extracted by the detection
        head."""
        pass

    def loss_and_predict(self,
                         x: Tuple[Tensor],
                         batch_data_samples: SampleList,
                         proposal_cfg: Optional[ConfigDict] = None,
                         **kwargs) -> Tuple[dict, InstanceList]:
        """Perform forward propagation of the head, then calculate loss and
        predictions from the features and data samples.

        Args:
            x (tuple[Tensor]): Features from FPN.
jshilong's avatar
jshilong committed
115
116
117
            batch_data_samples (list[:obj:`Det3DDataSample`]): Each item
                contains the meta information of each image and
                corresponding annotations.
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
            proposal_cfg (ConfigDict, optional): Test / postprocessing
                configuration, if None, test_cfg would be used.
                Defaults to None.

        Returns:
            tuple: the return value is a tuple contains:

                - losses: (dict[str, Tensor]): A dictionary of loss components.
                - predictions (list[:obj:`InstanceData`]): Detection
                  results of each image after the post process.
        """
        batch_gt_instances = []
        batch_gt_instances_ignore = []
        batch_input_metas = []
        for data_sample in batch_data_samples:
            batch_input_metas.append(data_sample.metainfo)
            batch_gt_instances.append(data_sample.gt_instances_3d)
            batch_gt_instances_ignore.append(
                data_sample.get('ignored_instances', None))

        outs = self(x)

        loss_inputs = outs + (batch_gt_instances, batch_input_metas,
                              batch_gt_instances_ignore)
        losses = self.loss_by_feat(*loss_inputs)

        predictions = self.predict_by_feat(
            *outs, batch_input_metas=batch_input_metas, cfg=proposal_cfg)
        return losses, predictions

    def predict(self,
                x: Tuple[Tensor],
                batch_data_samples: SampleList,
                rescale: bool = False) -> InstanceList:
        """Perform forward propagation of the 3D detection head and predict
        detection results on the features of the upstream network.

        Args:
            x (tuple[Tensor]): Multi-level features from the
                upstream network, each is a 4D-tensor.
            batch_data_samples (List[:obj:`Det3DDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance_3d`, `gt_pts_panoptic_seg` and
                `gt_pts_sem_seg`.
            rescale (bool, optional): Whether to rescale the results.
                Defaults to False.

        Returns:
            list[:obj:`InstanceData`]: Detection results of each sample
            after the post process.
            Each item usually contains following keys.

            - scores_3d (Tensor): Classification scores, has a shape
              (num_instances, )
            - labels_3d (Tensor): Labels of bboxes, has a shape
              (num_instances, ).
ChaimZhu's avatar
ChaimZhu committed
174
            - bboxes_3d (BaseInstance3DBoxes): Prediction of bboxes,
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
              contains a tensor with shape (num_instances, C), where
              C >= 7.
        """
        batch_input_metas = [
            data_samples.metainfo for data_samples in batch_data_samples
        ]
        outs = self(x)
        predictions = self.predict_by_feat(
            *outs, batch_input_metas=batch_input_metas, rescale=rescale)
        return predictions

    def predict_by_feat(self,
                        cls_scores: List[Tensor],
                        bbox_preds: List[Tensor],
                        dir_cls_preds: List[Tensor],
                        batch_input_metas: Optional[List[dict]] = None,
                        cfg: Optional[ConfigDict] = None,
                        rescale: bool = False,
                        **kwargs) -> InstanceList:
        """Transform a batch of output features extracted from the head into
        bbox results.

        Args:
            cls_scores (list[Tensor]): Classification scores for all
                scale levels, each is a 4D-tensor, has shape
                (batch_size, num_priors * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas for all
                scale levels, each is a 4D-tensor, has shape
                (batch_size, num_priors * 4, H, W).
            score_factors (list[Tensor], optional): Score factor for
                all scale level, each is a 4D-tensor, has shape
                (batch_size, num_priors * 1, H, W). Defaults to None.
207
            batch_input_metas (list[dict], Optional): Batch inputs meta info.
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
                Defaults to None.
            cfg (ConfigDict, optional): Test / postprocessing
                configuration, if None, test_cfg would be used.
                Defaults to None.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.

        Returns:
            list[:obj:`InstanceData`]: Detection results of each sample
            after the post process.
            Each item usually contains following keys.

            - scores_3d (Tensor): Classification scores, has a shape
              (num_instances, )
            - labels_3d (Tensor): Labels of bboxes, has a shape
              (num_instances, ).
ChaimZhu's avatar
ChaimZhu committed
224
            - bboxes_3d (BaseInstance3DBoxes): Prediction of bboxes,
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
              contains a tensor with shape (num_instances, C), where
              C >= 7.
        """
        assert len(cls_scores) == len(bbox_preds)
        assert len(cls_scores) == len(dir_cls_preds)
        num_levels = len(cls_scores)
        featmap_sizes = [cls_scores[i].shape[-2:] for i in range(num_levels)]
        mlvl_priors = self.prior_generator.grid_anchors(
            featmap_sizes, device=cls_scores[0].device)
        mlvl_priors = [
            prior.reshape(-1, self.box_code_size) for prior in mlvl_priors
        ]

        result_list = []

        for input_id in range(len(batch_input_metas)):

            input_meta = batch_input_metas[input_id]
            cls_score_list = select_single_mlvl(cls_scores, input_id)
            bbox_pred_list = select_single_mlvl(bbox_preds, input_id)
            dir_cls_pred_list = select_single_mlvl(dir_cls_preds, input_id)

            results = self._predict_by_feat_single(
                cls_score_list=cls_score_list,
                bbox_pred_list=bbox_pred_list,
                dir_cls_pred_list=dir_cls_pred_list,
                mlvl_priors=mlvl_priors,
                input_meta=input_meta,
                cfg=cfg,
                rescale=rescale,
                **kwargs)
            result_list.append(results)
        return result_list

    def _predict_by_feat_single(self,
                                cls_score_list: List[Tensor],
                                bbox_pred_list: List[Tensor],
                                dir_cls_pred_list: List[Tensor],
                                mlvl_priors: List[Tensor],
                                input_meta: dict,
                                cfg: ConfigDict,
                                rescale: bool = False,
                                **kwargs) -> InstanceData:
268
269
        """Transform a single points sample's features extracted from the head
        into bbox results.
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381

        Args:
            cls_score_list (list[Tensor]): Box scores from all scale
                levels of a single point cloud sample, each item has shape
                (num_priors * num_classes, H, W).
            bbox_pred_list (list[Tensor]): Box energies / deltas from
                all scale levels of a single point cloud sample, each item
                has shape (num_priors * C, H, W).
            dir_cls_pred_list (list[Tensor]): Predictions of direction class
                from all scale levels of a single point cloud sample, each
                item has shape (num_priors * 2, H, W).
            mlvl_priors (list[Tensor]): Each element in the list is
                the priors of a single level in feature pyramid. In all
                anchor-based methods, it has shape (num_priors, 4). In
                all anchor-free methods, it has shape (num_priors, 2)
                when `with_stride=True`, otherwise it still has shape
                (num_priors, 4).
            input_meta (dict): Contain point clouds and image meta info.
            cfg (:obj:`ConfigDict`): Test / postprocessing configuration,
                if None, test_cfg would be used.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.

        Returns:
            :obj:`InstanceData`: Detection results of each image
            after the post process.
            Each item usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                  the last dimension 4 arrange as (x1, y1, x2, y2).
        """
        cfg = self.test_cfg if cfg is None else cfg
        assert len(cls_score_list) == len(bbox_pred_list) == len(mlvl_priors)
        mlvl_bboxes = []
        mlvl_scores = []
        mlvl_dir_scores = []
        for cls_score, bbox_pred, dir_cls_pred, priors in zip(
                cls_score_list, bbox_pred_list, dir_cls_pred_list,
                mlvl_priors):
            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
            assert cls_score.size()[-2:] == dir_cls_pred.size()[-2:]
            dir_cls_pred = dir_cls_pred.permute(1, 2, 0).reshape(-1, 2)
            dir_cls_score = torch.max(dir_cls_pred, dim=-1)[1]

            cls_score = cls_score.permute(1, 2,
                                          0).reshape(-1, self.num_classes)
            if self.use_sigmoid_cls:
                scores = cls_score.sigmoid()
            else:
                scores = cls_score.softmax(-1)
            bbox_pred = bbox_pred.permute(1, 2,
                                          0).reshape(-1, self.box_code_size)

            nms_pre = cfg.get('nms_pre', -1)
            if nms_pre > 0 and scores.shape[0] > nms_pre:
                if self.use_sigmoid_cls:
                    max_scores, _ = scores.max(dim=1)
                else:
                    max_scores, _ = scores[:, :-1].max(dim=1)
                _, topk_inds = max_scores.topk(nms_pre)
                priors = priors[topk_inds, :]
                bbox_pred = bbox_pred[topk_inds, :]
                scores = scores[topk_inds, :]
                dir_cls_score = dir_cls_score[topk_inds]

            bboxes = self.bbox_coder.decode(priors, bbox_pred)
            mlvl_bboxes.append(bboxes)
            mlvl_scores.append(scores)
            mlvl_dir_scores.append(dir_cls_score)

        mlvl_bboxes = torch.cat(mlvl_bboxes)
        mlvl_bboxes_for_nms = xywhr2xyxyr(input_meta['box_type_3d'](
            mlvl_bboxes, box_dim=self.box_code_size).bev)
        mlvl_scores = torch.cat(mlvl_scores)
        mlvl_dir_scores = torch.cat(mlvl_dir_scores)

        if self.use_sigmoid_cls:
            # Add a dummy background class to the front when using sigmoid
            padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
            mlvl_scores = torch.cat([mlvl_scores, padding], dim=1)

        score_thr = cfg.get('score_thr', 0)
        results = box3d_multiclass_nms(mlvl_bboxes, mlvl_bboxes_for_nms,
                                       mlvl_scores, score_thr, cfg.max_num,
                                       cfg, mlvl_dir_scores)
        bboxes, scores, labels, dir_scores = results
        if bboxes.shape[0] > 0:
            dir_rot = limit_period(bboxes[..., 6] - self.dir_offset,
                                   self.dir_limit_offset, np.pi)
            bboxes[..., 6] = (
                dir_rot + self.dir_offset +
                np.pi * dir_scores.to(bboxes.dtype))
        bboxes = input_meta['box_type_3d'](bboxes, box_dim=self.box_code_size)
        results = InstanceData()
        results.bboxes_3d = bboxes
        results.scores_3d = scores
        results.labels_3d = labels

        return results

    # TODO: Support augmentation test
    def aug_test(self,
                 aug_batch_feats,
                 aug_batch_input_metas,
                 rescale=False,
                 with_ori_nms=False,
                 **kwargs):
        pass