kitti_converter.py 21 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
4
from collections import OrderedDict
from pathlib import Path

Wenwei Zhang's avatar
Wenwei Zhang committed
5
import mmcv
zhangwenwei's avatar
zhangwenwei committed
6
import numpy as np
7
from nuscenes.utils.geometry_utils import view_points
zhangwenwei's avatar
zhangwenwei committed
8

9
from mmdet3d.core.bbox import box_np_ops, points_cam2img
Wenwei Zhang's avatar
Wenwei Zhang committed
10
from .kitti_data_utils import get_kitti_image_info, get_waymo_image_info
11
12
13
from .nuscenes_converter import post_process_coords

kitti_categories = ('Pedestrian', 'Cyclist', 'Car')
zhangwenwei's avatar
zhangwenwei committed
14
15
16
17


def convert_to_kitti_info_version2(info):
    """convert kitti info v1 to v2 if possible.
liyinhao's avatar
liyinhao committed
18
19
20

    Args:
        info (dict): Info of the input kitti data.
wangtai's avatar
wangtai committed
21
22
23
            - image (dict): image info
            - calib (dict): calibration info
            - point_cloud (dict): point cloud info
zhangwenwei's avatar
zhangwenwei committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
    """
    if 'image' not in info or 'calib' not in info or 'point_cloud' not in info:
        info['image'] = {
            'image_shape': info['img_shape'],
            'image_idx': info['image_idx'],
            'image_path': info['img_path'],
        }
        info['calib'] = {
            'R0_rect': info['calib/R0_rect'],
            'Tr_velo_to_cam': info['calib/Tr_velo_to_cam'],
            'P2': info['calib/P2'],
        }
        info['point_cloud'] = {
            'velodyne_path': info['velodyne_path'],
        }


def _read_imageset_file(path):
    with open(path, 'r') as f:
        lines = f.readlines()
    return [int(line) for line in lines]


def _calculate_num_points_in_gt(data_path,
                                infos,
                                relative_path,
                                remove_outside=True,
                                num_features=4):
Wenwei Zhang's avatar
Wenwei Zhang committed
52
    for info in mmcv.track_iter_progress(infos):
zhangwenwei's avatar
zhangwenwei committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
        pc_info = info['point_cloud']
        image_info = info['image']
        calib = info['calib']
        if relative_path:
            v_path = str(Path(data_path) / pc_info['velodyne_path'])
        else:
            v_path = pc_info['velodyne_path']
        points_v = np.fromfile(
            v_path, dtype=np.float32, count=-1).reshape([-1, num_features])
        rect = calib['R0_rect']
        Trv2c = calib['Tr_velo_to_cam']
        P2 = calib['P2']
        if remove_outside:
            points_v = box_np_ops.remove_outside_points(
                points_v, rect, Trv2c, P2, image_info['image_shape'])

        # points_v = points_v[points_v[:, 0] > 0]
        annos = info['annos']
        num_obj = len([n for n in annos['name'] if n != 'DontCare'])
        # annos = kitti.filter_kitti_anno(annos, ['DontCare'])
        dims = annos['dimensions'][:num_obj]
        loc = annos['location'][:num_obj]
        rots = annos['rotation_y'][:num_obj]
        gt_boxes_camera = np.concatenate([loc, dims, rots[..., np.newaxis]],
                                         axis=1)
        gt_boxes_lidar = box_np_ops.box_camera_to_lidar(
            gt_boxes_camera, rect, Trv2c)
        indices = box_np_ops.points_in_rbbox(points_v[:, :3], gt_boxes_lidar)
        num_points_in_gt = indices.sum(0)
        num_ignored = len(annos['dimensions']) - num_obj
        num_points_in_gt = np.concatenate(
            [num_points_in_gt, -np.ones([num_ignored])])
        annos['num_points_in_gt'] = num_points_in_gt.astype(np.int32)


def create_kitti_info_file(data_path,
Wenwei Zhang's avatar
Wenwei Zhang committed
89
                           pkl_prefix='kitti',
90
                           with_plane=False,
zhangwenwei's avatar
zhangwenwei committed
91
92
                           save_path=None,
                           relative_path=True):
liyinhao's avatar
liyinhao committed
93
94
95
96
97
98
    """Create info file of KITTI dataset.

    Given the raw data, generate its related info file in pkl format.

    Args:
        data_path (str): Path of the data root.
99
100
        pkl_prefix (str, optional): Prefix of the info file to be generated.
            Default: 'kitti'.
101
102
        with_plane (bool, optional): Whether to use plane information.
            Default: False.
103
104
105
106
        save_path (str, optional): Path to save the info file.
            Default: None.
        relative_path (bool, optional): Whether to use relative path.
            Default: True.
liyinhao's avatar
liyinhao committed
107
    """
zhangwenwei's avatar
zhangwenwei committed
108
    imageset_folder = Path(data_path) / 'ImageSets'
liyinhao's avatar
liyinhao committed
109
110
    train_img_ids = _read_imageset_file(str(imageset_folder / 'train.txt'))
    val_img_ids = _read_imageset_file(str(imageset_folder / 'val.txt'))
zhangwenwei's avatar
zhangwenwei committed
111
112
113
114
115
116
117
118
119
120
121
122
    test_img_ids = _read_imageset_file(str(imageset_folder / 'test.txt'))

    print('Generate info. this may take several minutes.')
    if save_path is None:
        save_path = Path(data_path)
    else:
        save_path = Path(save_path)
    kitti_infos_train = get_kitti_image_info(
        data_path,
        training=True,
        velodyne=True,
        calib=True,
123
        with_plane=with_plane,
zhangwenwei's avatar
zhangwenwei committed
124
125
126
127
128
        image_ids=train_img_ids,
        relative_path=relative_path)
    _calculate_num_points_in_gt(data_path, kitti_infos_train, relative_path)
    filename = save_path / f'{pkl_prefix}_infos_train.pkl'
    print(f'Kitti info train file is saved to {filename}')
Wenwei Zhang's avatar
Wenwei Zhang committed
129
    mmcv.dump(kitti_infos_train, filename)
zhangwenwei's avatar
zhangwenwei committed
130
131
132
133
134
    kitti_infos_val = get_kitti_image_info(
        data_path,
        training=True,
        velodyne=True,
        calib=True,
135
        with_plane=with_plane,
zhangwenwei's avatar
zhangwenwei committed
136
137
138
139
140
        image_ids=val_img_ids,
        relative_path=relative_path)
    _calculate_num_points_in_gt(data_path, kitti_infos_val, relative_path)
    filename = save_path / f'{pkl_prefix}_infos_val.pkl'
    print(f'Kitti info val file is saved to {filename}')
Wenwei Zhang's avatar
Wenwei Zhang committed
141
    mmcv.dump(kitti_infos_val, filename)
zhangwenwei's avatar
zhangwenwei committed
142
143
    filename = save_path / f'{pkl_prefix}_infos_trainval.pkl'
    print(f'Kitti info trainval file is saved to {filename}')
Wenwei Zhang's avatar
Wenwei Zhang committed
144
    mmcv.dump(kitti_infos_train + kitti_infos_val, filename)
zhangwenwei's avatar
zhangwenwei committed
145
146
147
148
149
150
151

    kitti_infos_test = get_kitti_image_info(
        data_path,
        training=False,
        label_info=False,
        velodyne=True,
        calib=True,
152
        with_plane=False,
zhangwenwei's avatar
zhangwenwei committed
153
154
155
156
        image_ids=test_img_ids,
        relative_path=relative_path)
    filename = save_path / f'{pkl_prefix}_infos_test.pkl'
    print(f'Kitti info test file is saved to {filename}')
Wenwei Zhang's avatar
Wenwei Zhang committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    mmcv.dump(kitti_infos_test, filename)


def create_waymo_info_file(data_path,
                           pkl_prefix='waymo',
                           save_path=None,
                           relative_path=True,
                           max_sweeps=5):
    """Create info file of waymo dataset.

    Given the raw data, generate its related info file in pkl format.

    Args:
        data_path (str): Path of the data root.
171
172
173
174
175
176
177
178
        pkl_prefix (str, optional): Prefix of the info file to be generated.
            Default: 'waymo'.
        save_path (str, optional): Path to save the info file.
            Default: None.
        relative_path (bool, optional): Whether to use relative path.
            Default: True.
        max_sweeps (int, optional): Max sweeps before the detection frame
            to be used. Default: 5.
Wenwei Zhang's avatar
Wenwei Zhang committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    """
    imageset_folder = Path(data_path) / 'ImageSets'
    train_img_ids = _read_imageset_file(str(imageset_folder / 'train.txt'))
    val_img_ids = _read_imageset_file(str(imageset_folder / 'val.txt'))
    test_img_ids = _read_imageset_file(str(imageset_folder / 'test.txt'))

    print('Generate info. this may take several minutes.')
    if save_path is None:
        save_path = Path(data_path)
    else:
        save_path = Path(save_path)
    waymo_infos_train = get_waymo_image_info(
        data_path,
        training=True,
        velodyne=True,
        calib=True,
        pose=True,
        image_ids=train_img_ids,
        relative_path=relative_path,
        max_sweeps=max_sweeps)
    _calculate_num_points_in_gt(
        data_path,
        waymo_infos_train,
        relative_path,
        num_features=6,
        remove_outside=False)
    filename = save_path / f'{pkl_prefix}_infos_train.pkl'
    print(f'Waymo info train file is saved to {filename}')
    mmcv.dump(waymo_infos_train, filename)
    waymo_infos_val = get_waymo_image_info(
        data_path,
        training=True,
        velodyne=True,
        calib=True,
        pose=True,
        image_ids=val_img_ids,
        relative_path=relative_path,
        max_sweeps=max_sweeps)
    _calculate_num_points_in_gt(
        data_path,
        waymo_infos_val,
        relative_path,
        num_features=6,
        remove_outside=False)
    filename = save_path / f'{pkl_prefix}_infos_val.pkl'
    print(f'Waymo info val file is saved to {filename}')
    mmcv.dump(waymo_infos_val, filename)
    filename = save_path / f'{pkl_prefix}_infos_trainval.pkl'
    print(f'Waymo info trainval file is saved to {filename}')
    mmcv.dump(waymo_infos_train + waymo_infos_val, filename)
    waymo_infos_test = get_waymo_image_info(
        data_path,
        training=False,
        label_info=False,
        velodyne=True,
        calib=True,
        pose=True,
        image_ids=test_img_ids,
        relative_path=relative_path,
        max_sweeps=max_sweeps)
    filename = save_path / f'{pkl_prefix}_infos_test.pkl'
    print(f'Waymo info test file is saved to {filename}')
    mmcv.dump(waymo_infos_test, filename)
zhangwenwei's avatar
zhangwenwei committed
242
243
244
245
246


def _create_reduced_point_cloud(data_path,
                                info_path,
                                save_path=None,
Wenwei Zhang's avatar
Wenwei Zhang committed
247
248
249
250
                                back=False,
                                num_features=4,
                                front_camera_id=2):
    """Create reduced point clouds for given info.
zhangwenwei's avatar
zhangwenwei committed
251

Wenwei Zhang's avatar
Wenwei Zhang committed
252
253
254
    Args:
        data_path (str): Path of original data.
        info_path (str): Path of data info.
255
256
257
258
259
260
261
        save_path (str, optional): Path to save reduced point cloud
            data. Default: None.
        back (bool, optional): Whether to flip the points to back.
            Default: False.
        num_features (int, optional): Number of point features. Default: 4.
        front_camera_id (int, optional): The referenced/front camera ID.
            Default: 2.
Wenwei Zhang's avatar
Wenwei Zhang committed
262
263
264
265
    """
    kitti_infos = mmcv.load(info_path)

    for info in mmcv.track_iter_progress(kitti_infos):
zhangwenwei's avatar
zhangwenwei committed
266
267
268
269
270
271
272
        pc_info = info['point_cloud']
        image_info = info['image']
        calib = info['calib']

        v_path = pc_info['velodyne_path']
        v_path = Path(data_path) / v_path
        points_v = np.fromfile(
Wenwei Zhang's avatar
Wenwei Zhang committed
273
274
            str(v_path), dtype=np.float32,
            count=-1).reshape([-1, num_features])
zhangwenwei's avatar
zhangwenwei committed
275
        rect = calib['R0_rect']
Wenwei Zhang's avatar
Wenwei Zhang committed
276
277
278
279
        if front_camera_id == 2:
            P2 = calib['P2']
        else:
            P2 = calib[f'P{str(front_camera_id)}']
zhangwenwei's avatar
zhangwenwei committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        Trv2c = calib['Tr_velo_to_cam']
        # first remove z < 0 points
        # keep = points_v[:, -1] > 0
        # points_v = points_v[keep]
        # then remove outside.
        if back:
            points_v[:, 0] = -points_v[:, 0]
        points_v = box_np_ops.remove_outside_points(points_v, rect, Trv2c, P2,
                                                    image_info['image_shape'])
        if save_path is None:
            save_dir = v_path.parent.parent / (v_path.parent.stem + '_reduced')
            if not save_dir.exists():
                save_dir.mkdir()
            save_filename = save_dir / v_path.name
            # save_filename = str(v_path) + '_reduced'
            if back:
                save_filename += '_back'
        else:
            save_filename = str(Path(save_path) / v_path.name)
            if back:
                save_filename += '_back'
        with open(save_filename, 'w') as f:
            points_v.tofile(f)


def create_reduced_point_cloud(data_path,
                               pkl_prefix,
                               train_info_path=None,
                               val_info_path=None,
                               test_info_path=None,
                               save_path=None,
                               with_back=False):
Wenwei Zhang's avatar
Wenwei Zhang committed
312
    """Create reduced point clouds for training/validation/testing.
wangtai's avatar
wangtai committed
313
314

    Args:
Wenwei Zhang's avatar
Wenwei Zhang committed
315
        data_path (str): Path of original data.
wangtai's avatar
wangtai committed
316
        pkl_prefix (str): Prefix of info files.
317
318
319
        train_info_path (str, optional): Path of training set info.
            Default: None.
        val_info_path (str, optional): Path of validation set info.
wangtai's avatar
wangtai committed
320
            Default: None.
321
        test_info_path (str, optional): Path of test set info.
wangtai's avatar
wangtai committed
322
            Default: None.
323
        save_path (str, optional): Path to save reduced point cloud data.
wangtai's avatar
wangtai committed
324
            Default: None.
325
326
        with_back (bool, optional): Whether to flip the points to back.
            Default: False.
wangtai's avatar
wangtai committed
327
    """
zhangwenwei's avatar
zhangwenwei committed
328
329
330
331
332
333
334
335
336
    if train_info_path is None:
        train_info_path = Path(data_path) / f'{pkl_prefix}_infos_train.pkl'
    if val_info_path is None:
        val_info_path = Path(data_path) / f'{pkl_prefix}_infos_val.pkl'
    if test_info_path is None:
        test_info_path = Path(data_path) / f'{pkl_prefix}_infos_test.pkl'

    print('create reduced point cloud for training set')
    _create_reduced_point_cloud(data_path, train_info_path, save_path)
Wenwei Zhang's avatar
Wenwei Zhang committed
337
    print('create reduced point cloud for validation set')
zhangwenwei's avatar
zhangwenwei committed
338
339
340
341
342
343
344
345
346
347
    _create_reduced_point_cloud(data_path, val_info_path, save_path)
    print('create reduced point cloud for testing set')
    _create_reduced_point_cloud(data_path, test_info_path, save_path)
    if with_back:
        _create_reduced_point_cloud(
            data_path, train_info_path, save_path, back=True)
        _create_reduced_point_cloud(
            data_path, val_info_path, save_path, back=True)
        _create_reduced_point_cloud(
            data_path, test_info_path, save_path, back=True)
348
349
350
351
352
353
354
355


def export_2d_annotation(root_path, info_path, mono3d=True):
    """Export 2d annotation from the info file and raw data.

    Args:
        root_path (str): Root path of the raw data.
        info_path (str): Path of the info file.
356
357
        mono3d (bool, optional): Whether to export mono3d annotation.
            Default: True.
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
    """
    # get bbox annotations for camera
    kitti_infos = mmcv.load(info_path)
    cat2Ids = [
        dict(id=kitti_categories.index(cat_name), name=cat_name)
        for cat_name in kitti_categories
    ]
    coco_ann_id = 0
    coco_2d_dict = dict(annotations=[], images=[], categories=cat2Ids)
    from os import path as osp
    for info in mmcv.track_iter_progress(kitti_infos):
        coco_infos = get_2d_boxes(info, occluded=[0, 1, 2, 3], mono3d=mono3d)
        (height, width,
         _) = mmcv.imread(osp.join(root_path,
                                   info['image']['image_path'])).shape
        coco_2d_dict['images'].append(
            dict(
                file_name=info['image']['image_path'],
                id=info['image']['image_idx'],
                Tri2v=info['calib']['Tr_imu_to_velo'],
                Trv2c=info['calib']['Tr_velo_to_cam'],
                rect=info['calib']['R0_rect'],
                cam_intrinsic=info['calib']['P2'],
                width=width,
                height=height))
        for coco_info in coco_infos:
            if coco_info is None:
                continue
            # add an empty key for coco format
            coco_info['segmentation'] = []
            coco_info['id'] = coco_ann_id
            coco_2d_dict['annotations'].append(coco_info)
            coco_ann_id += 1
    if mono3d:
        json_prefix = f'{info_path[:-4]}_mono3d'
    else:
        json_prefix = f'{info_path[:-4]}'
    mmcv.dump(coco_2d_dict, f'{json_prefix}.coco.json')


def get_2d_boxes(info, occluded, mono3d=True):
    """Get the 2D annotation records for a given info.

    Args:
        info: Information of the given sample data.
403
404
        occluded: Integer (0, 1, 2, 3) indicating occlusion state:
            0 = fully visible, 1 = partly occluded, 2 = largely occluded,
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
            3 = unknown, -1 = DontCare
        mono3d (bool): Whether to get boxes with mono3d annotation.

    Return:
        list[dict]: List of 2D annotation record that belongs to the input
            `sample_data_token`.
    """
    # Get calibration information
    P2 = info['calib']['P2']

    repro_recs = []
    # if no annotations in info (test dataset), then return
    if 'annos' not in info:
        return repro_recs

    # Get all the annotation with the specified visibilties.
    ann_dicts = info['annos']
    mask = [(ocld in occluded) for ocld in ann_dicts['occluded']]
    for k in ann_dicts.keys():
        ann_dicts[k] = ann_dicts[k][mask]

    # convert dict of list to list of dict
    ann_recs = []
    for i in range(len(ann_dicts['occluded'])):
        ann_rec = {}
        for k in ann_dicts.keys():
            ann_rec[k] = ann_dicts[k][i]
        ann_recs.append(ann_rec)

    for ann_idx, ann_rec in enumerate(ann_recs):
        # Augment sample_annotation with token information.
        ann_rec['sample_annotation_token'] = \
            f"{info['image']['image_idx']}.{ann_idx}"
        ann_rec['sample_data_token'] = info['image']['image_idx']
        sample_data_token = info['image']['image_idx']

        loc = ann_rec['location'][np.newaxis, :]
        dim = ann_rec['dimensions'][np.newaxis, :]
        rot = ann_rec['rotation_y'][np.newaxis, np.newaxis]
        # transform the center from [0.5, 1.0, 0.5] to [0.5, 0.5, 0.5]
        dst = np.array([0.5, 0.5, 0.5])
        src = np.array([0.5, 1.0, 0.5])
        loc = loc + dim * (dst - src)
        offset = (info['calib']['P2'][0, 3] - info['calib']['P0'][0, 3]) \
            / info['calib']['P2'][0, 0]
        loc_3d = np.copy(loc)
        loc_3d[0, 0] += offset
        gt_bbox_3d = np.concatenate([loc, dim, rot], axis=1).astype(np.float32)

        # Filter out the corners that are not in front of the calibrated
        # sensor.
        corners_3d = box_np_ops.center_to_corner_box3d(
            gt_bbox_3d[:, :3],
            gt_bbox_3d[:, 3:6],
            gt_bbox_3d[:, 6], [0.5, 0.5, 0.5],
            axis=1)
        corners_3d = corners_3d[0].T  # (1, 8, 3) -> (3, 8)
        in_front = np.argwhere(corners_3d[2, :] > 0).flatten()
        corners_3d = corners_3d[:, in_front]

        # Project 3d box to 2d.
        camera_intrinsic = P2
        corner_coords = view_points(corners_3d, camera_intrinsic,
                                    True).T[:, :2].tolist()

        # Keep only corners that fall within the image.
        final_coords = post_process_coords(corner_coords)

        # Skip if the convex hull of the re-projected corners
        # does not intersect the image canvas.
        if final_coords is None:
            continue
        else:
            min_x, min_y, max_x, max_y = final_coords

        # Generate dictionary record to be included in the .json file.
        repro_rec = generate_record(ann_rec, min_x, min_y, max_x, max_y,
                                    sample_data_token,
                                    info['image']['image_path'])

        # If mono3d=True, add 3D annotations in camera coordinates
        if mono3d and (repro_rec is not None):
            repro_rec['bbox_cam3d'] = np.concatenate(
                [loc_3d, dim, rot],
                axis=1).astype(np.float32).squeeze().tolist()
            repro_rec['velo_cam3d'] = -1  # no velocity in KITTI

            center3d = np.array(loc).reshape([1, 3])
493
            center2d = points_cam2img(
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
                center3d, camera_intrinsic, with_depth=True)
            repro_rec['center2d'] = center2d.squeeze().tolist()
            # normalized center2D + depth
            # samples with depth < 0 will be removed
            if repro_rec['center2d'][2] <= 0:
                continue

            repro_rec['attribute_name'] = -1  # no attribute in KITTI
            repro_rec['attribute_id'] = -1

        repro_recs.append(repro_rec)

    return repro_recs


def generate_record(ann_rec, x1, y1, x2, y2, sample_data_token, filename):
510
    """Generate one 2D annotation record given various information on top of
511
512
513
514
515
516
517
518
519
520
521
522
523
524
    the 2D bounding box coordinates.

    Args:
        ann_rec (dict): Original 3d annotation record.
        x1 (float): Minimum value of the x coordinate.
        y1 (float): Minimum value of the y coordinate.
        x2 (float): Maximum value of the x coordinate.
        y2 (float): Maximum value of the y coordinate.
        sample_data_token (str): Sample data token.
        filename (str):The corresponding image file where the annotation
            is present.

    Returns:
        dict: A sample 2D annotation record.
525
            - file_name (str): file name
526
527
528
529
            - image_id (str): sample data token
            - area (float): 2d box area
            - category_name (str): category name
            - category_id (int): category id
530
            - bbox (list[float]): left x, top y, x_size, y_size of 2d box
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
            - iscrowd (int): whether the area is crowd
    """
    repro_rec = OrderedDict()
    repro_rec['sample_data_token'] = sample_data_token
    coco_rec = dict()

    key_mapping = {
        'name': 'category_name',
        'num_points_in_gt': 'num_lidar_pts',
        'sample_annotation_token': 'sample_annotation_token',
        'sample_data_token': 'sample_data_token',
    }

    for key, value in ann_rec.items():
        if key in key_mapping.keys():
            repro_rec[key_mapping[key]] = value

    repro_rec['bbox_corners'] = [x1, y1, x2, y2]
    repro_rec['filename'] = filename

    coco_rec['file_name'] = filename
    coco_rec['image_id'] = sample_data_token
    coco_rec['area'] = (y2 - y1) * (x2 - x1)

    if repro_rec['category_name'] not in kitti_categories:
        return None
    cat_name = repro_rec['category_name']
    coco_rec['category_name'] = cat_name
    coco_rec['category_id'] = kitti_categories.index(cat_name)
    coco_rec['bbox'] = [x1, y1, x2 - x1, y2 - y1]
    coco_rec['iscrowd'] = 0

    return coco_rec