test_mvxnet.py 1.63 KB
Newer Older
jshilong's avatar
jshilong committed
1
2
3
4
5
6
import unittest

import torch
from mmengine import DefaultScope

from mmdet3d.registry import MODELS
7
8
from mmdet3d.testing import (create_detector_inputs, get_detector_cfg,
                             setup_seed)
jshilong's avatar
jshilong committed
9
10
11
12
13
14
15
16
17


class TestMVXNet(unittest.TestCase):

    def test_mvxnet(self):
        import mmdet3d.models

        assert hasattr(mmdet3d.models, 'DynamicMVXFasterRCNN')

18
        setup_seed(0)
jshilong's avatar
jshilong committed
19
        DefaultScope.get_instance('test_mvxnet', scope_name='mmdet3d')
20
        mvx_net_cfg = get_detector_cfg(
21
            'mvxnet/mvxnet_fpn_dv_second_secfpn_8xb2-80e_kitti-3d-3class.py'  # noqa
jshilong's avatar
jshilong committed
22
23
        )
        model = MODELS.build(mvx_net_cfg)
zhangshilong's avatar
zhangshilong committed
24
        num_gt_instance = 1
25
        packed_inputs = create_detector_inputs(
26
            with_img=False, num_gt_instance=num_gt_instance, points_feat_dim=4)
jshilong's avatar
jshilong committed
27
28
29
30
31

        if torch.cuda.is_available():

            model = model.cuda()
            # test simple_test
32
            data = model.data_preprocessor(packed_inputs, True)
jshilong's avatar
jshilong committed
33
34
            # save the memory when do the unitest
            with torch.no_grad():
zhangshilong's avatar
zhangshilong committed
35
                torch.cuda.empty_cache()
36
                losses = model.forward(**data, mode='loss')
jshilong's avatar
jshilong committed
37
38
39
40
41
            assert losses['loss_cls'][0] >= 0
            assert losses['loss_bbox'][0] >= 0
            assert losses['loss_dir'][0] >= 0

            with torch.no_grad():
42
43
                results = model.forward(**data, mode='predict')
            self.assertEqual(len(results), 1)
jshilong's avatar
jshilong committed
44
45
46
47
            self.assertIn('bboxes_3d', results[0].pred_instances_3d)
            self.assertIn('scores_3d', results[0].pred_instances_3d)
            self.assertIn('labels_3d', results[0].pred_instances_3d)
        # TODO test_aug_test