test_groupfree3d.py 1.84 KB
Newer Older
jshilong's avatar
jshilong committed
1
2
3
4
5
6
import unittest

import torch
from mmengine import DefaultScope

from mmdet3d.registry import MODELS
7
8
from mmdet3d.testing import (create_detector_inputs, get_detector_cfg,
                             setup_seed)
jshilong's avatar
jshilong committed
9
10
11
12
13
14
15
16
17


class TestGroupfree3d(unittest.TestCase):

    def test_groupfree3d(self):
        import mmdet3d.models

        assert hasattr(mmdet3d.models, 'GroupFree3DNet')
        DefaultScope.get_instance('test_groupfree3d', scope_name='mmdet3d')
18
19
        setup_seed(0)
        voxel_net_cfg = get_detector_cfg(
20
            'groupfree3d/groupfree3d_head-L6-O256_4xb8_scannet-seg.py')
jshilong's avatar
jshilong committed
21
22
        model = MODELS.build(voxel_net_cfg)
        num_gt_instance = 5
23
        packed_inputs = create_detector_inputs(
24
25
26
27
            num_gt_instance=num_gt_instance,
            points_feat_dim=3,
            with_pts_semantic_mask=True,
            with_pts_instance_mask=True)
jshilong's avatar
jshilong committed
28
29
30
31
32

        if torch.cuda.is_available():
            model = model.cuda()
            # test simple_test
            with torch.no_grad():
33
                data = model.data_preprocessor(packed_inputs, True)
zhangshilong's avatar
zhangshilong committed
34
                torch.cuda.empty_cache()
35
36
                results = model.forward(**data, mode='predict')
            self.assertEqual(len(results), 1)
jshilong's avatar
jshilong committed
37
38
39
40
41
42
            self.assertIn('bboxes_3d', results[0].pred_instances_3d)
            self.assertIn('scores_3d', results[0].pred_instances_3d)
            self.assertIn('labels_3d', results[0].pred_instances_3d)

            # save the memory
            with torch.no_grad():
43
                losses = model.forward(**data, mode='loss')
jshilong's avatar
jshilong committed
44
45
46
47
48
49

            self.assertGreater(losses['sampling_objectness_loss'], 0)
            self.assertGreater(losses['proposal.objectness_loss'], 0)
            self.assertGreater(losses['s0.objectness_loss'], 0)
            self.assertGreater(losses['s1.size_res_loss'], 0)
            self.assertGreater(losses['s4.size_class_loss'], 0)