voxel_set_abstraction.py 13.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional

import mmengine
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmcv.ops.furthest_point_sample import furthest_point_sample
from mmengine.model import BaseModule

from mmdet3d.registry import MODELS
from mmdet3d.utils import InstanceList


def bilinear_interpolate_torch(inputs, x, y):
    """Bilinear interpolate for inputs."""
    x0 = torch.floor(x).long()
    x1 = x0 + 1

    y0 = torch.floor(y).long()
    y1 = y0 + 1

    x0 = torch.clamp(x0, 0, inputs.shape[1] - 1)
    x1 = torch.clamp(x1, 0, inputs.shape[1] - 1)
    y0 = torch.clamp(y0, 0, inputs.shape[0] - 1)
    y1 = torch.clamp(y1, 0, inputs.shape[0] - 1)

    Ia = inputs[y0, x0]
    Ib = inputs[y1, x0]
    Ic = inputs[y0, x1]
    Id = inputs[y1, x1]

    wa = (x1.type_as(x) - x) * (y1.type_as(y) - y)
    wb = (x1.type_as(x) - x) * (y - y0.type_as(y))
    wc = (x - x0.type_as(x)) * (y1.type_as(y) - y)
    wd = (x - x0.type_as(x)) * (y - y0.type_as(y))
    ans = torch.t((torch.t(Ia) * wa)) + torch.t(torch.t(Ib) * wb) + torch.t(
        torch.t(Ic) * wc) + torch.t(torch.t(Id) * wd)
    return ans


@MODELS.register_module()
class VoxelSetAbstraction(BaseModule):
    """Voxel set abstraction module for PVRCNN and PVRCNN++.

    Args:
        num_keypoints (int): The number of key points sampled from
            raw points cloud.
        fused_out_channel (int): Key points feature output channels
            num after fused. Default to 128.
        voxel_size (list[float]): Size of voxels. Defaults to
            [0.05, 0.05, 0.1].
        point_cloud_range (list[float]): Point cloud range. Defaults to
            [0, -40, -3, 70.4, 40, 1].
        voxel_sa_cfgs_list (List[dict or ConfigDict], optional): List of SA
            module cfg. Used to gather key points features from multi-wise
            voxel features. Default to None.
        rawpoints_sa_cfgs (dict or ConfigDict, optional): SA module cfg.
            Used to gather key points features from raw points. Default to
            None.
        bev_feat_channel (int): Bev features channels num.
            Default to 256.
        bev_scale_factor (int): Bev features scale factor. Default to 8.
        voxel_center_as_source (bool): Whether used voxel centers as points
            cloud key points. Defaults to False.
        norm_cfg (dict[str]): Config of normalization layer. Default
            used dict(type='BN1d', eps=1e-5, momentum=0.1).
        bias (bool | str, optional): If specified as `auto`, it will be
            decided by `norm_cfg`. `bias` will be set as True if
            `norm_cfg` is None, otherwise False. Default: 'auto'.
    """

    def __init__(self,
                 num_keypoints: int,
                 fused_out_channel: int = 128,
                 voxel_size: list = [0.05, 0.05, 0.1],
                 point_cloud_range: list = [0, -40, -3, 70.4, 40, 1],
                 voxel_sa_cfgs_list: Optional[list] = None,
                 rawpoints_sa_cfgs: Optional[dict] = None,
                 bev_feat_channel: int = 256,
                 bev_scale_factor: int = 8,
                 voxel_center_as_source: bool = False,
                 norm_cfg: dict = dict(type='BN2d', eps=1e-5, momentum=0.1),
                 bias: str = 'auto') -> None:
        super().__init__()
        self.num_keypoints = num_keypoints
        self.fused_out_channel = fused_out_channel
        self.voxel_size = voxel_size
        self.point_cloud_range = point_cloud_range
        self.voxel_center_as_source = voxel_center_as_source

        gathered_channel = 0

        if rawpoints_sa_cfgs is not None:
            self.rawpoints_sa_layer = MODELS.build(rawpoints_sa_cfgs)
            gathered_channel += sum(
                [x[-1] for x in rawpoints_sa_cfgs.mlp_channels])
        else:
            self.rawpoints_sa_layer = None

        if voxel_sa_cfgs_list is not None:
            self.voxel_sa_configs_list = voxel_sa_cfgs_list
            self.voxel_sa_layers = nn.ModuleList()
            for voxel_sa_config in voxel_sa_cfgs_list:
                cur_layer = MODELS.build(voxel_sa_config)
                self.voxel_sa_layers.append(cur_layer)
                gathered_channel += sum(
                    [x[-1] for x in voxel_sa_config.mlp_channels])
        else:
            self.voxel_sa_layers = None

        if bev_feat_channel is not None and bev_scale_factor is not None:
            self.bev_cfg = mmengine.Config(
                dict(
                    bev_feat_channels=bev_feat_channel,
                    bev_scale_factor=bev_scale_factor))
            gathered_channel += bev_feat_channel
        else:
            self.bev_cfg = None
        self.point_feature_fusion_layer = nn.Sequential(
            ConvModule(
                gathered_channel,
                fused_out_channel,
                kernel_size=(1, 1),
                stride=(1, 1),
                conv_cfg=dict(type='Conv2d'),
                norm_cfg=norm_cfg,
                bias=bias))

    def interpolate_from_bev_features(self, keypoints: torch.Tensor,
                                      bev_features: torch.Tensor,
                                      batch_size: int,
                                      bev_scale_factor: int) -> torch.Tensor:
        """Gather key points features from bev feature map by interpolate.

        Args:
            keypoints (torch.Tensor): Sampled key points with shape
                (N1 + N2 + ..., NDim).
            bev_features (torch.Tensor): Bev feature map from the first
                stage with shape (B, C, H, W).
            batch_size (int): Input batch size.
            bev_scale_factor (int): Bev feature map scale factor.

        Returns:
            torch.Tensor: Key points features gather from bev feature
                map with shape (N1 + N2 + ..., C)
        """
        x_idxs = (keypoints[..., 0] -
                  self.point_cloud_range[0]) / self.voxel_size[0]
        y_idxs = (keypoints[..., 1] -
                  self.point_cloud_range[1]) / self.voxel_size[1]

        x_idxs = x_idxs / bev_scale_factor
        y_idxs = y_idxs / bev_scale_factor

        point_bev_features_list = []
        for k in range(batch_size):
            cur_x_idxs = x_idxs[k, ...]
            cur_y_idxs = y_idxs[k, ...]
            cur_bev_features = bev_features[k].permute(1, 2, 0)  # (H, W, C)
            point_bev_features = bilinear_interpolate_torch(
                cur_bev_features, cur_x_idxs, cur_y_idxs)
            point_bev_features_list.append(point_bev_features)

        point_bev_features = torch.cat(
            point_bev_features_list, dim=0)  # (N1 + N2 + ..., C)
        return point_bev_features.view(batch_size, keypoints.shape[1], -1)

    def get_voxel_centers(self, coors: torch.Tensor,
                          scale_factor: float) -> torch.Tensor:
        """Get voxel centers coordinate.

        Args:
            coors (torch.Tensor): Coordinates of voxels shape is Nx(1+NDim),
                where 1 represents the batch index.
            scale_factor (float): Scale factor.

        Returns:
            torch.Tensor: Voxel centers coordinate with shape (N, 3).
        """
        assert coors.shape[1] == 4
        voxel_centers = coors[:, [3, 2, 1]].float()  # (xyz)
        voxel_size = torch.tensor(
            self.voxel_size,
            device=voxel_centers.device).float() * scale_factor
        pc_range = torch.tensor(
            self.point_cloud_range[0:3], device=voxel_centers.device).float()
        voxel_centers = (voxel_centers + 0.5) * voxel_size + pc_range
        return voxel_centers

    def sample_key_points(self, points: List[torch.Tensor],
                          coors: torch.Tensor) -> torch.Tensor:
        """Sample key points from raw points cloud.

        Args:
            points (List[torch.Tensor]): Point cloud of each sample.
            coors (torch.Tensor): Coordinates of voxels shape is Nx(1+NDim),
                where 1 represents the batch index.

        Returns:
            torch.Tensor: (B, M, 3) Key points of each sample.
                M is num_keypoints.
        """
        assert points is not None or coors is not None
        if self.voxel_center_as_source:
            _src_points = self.get_voxel_centers(coors=coors, scale_factor=1)
            batch_size = coors[-1, 0].item() + 1
            src_points = [
                _src_points[coors[:, 0] == b] for b in range(batch_size)
            ]
        else:
            src_points = [p[..., :3] for p in points]

        keypoints_list = []
        for points_to_sample in src_points:
            num_points = points_to_sample.shape[0]
            cur_pt_idxs = furthest_point_sample(
                points_to_sample.unsqueeze(dim=0).contiguous(),
                self.num_keypoints).long()[0]

            if num_points < self.num_keypoints:
                times = int(self.num_keypoints / num_points) + 1
                non_empty = cur_pt_idxs[:num_points]
                cur_pt_idxs = non_empty.repeat(times)[:self.num_keypoints]

            keypoints = points_to_sample[cur_pt_idxs]

            keypoints_list.append(keypoints)
        keypoints = torch.stack(keypoints_list, dim=0)  # (B, M, 3)
        return keypoints

    def forward(self, batch_inputs_dict: dict, feats_dict: dict,
                rpn_results_list: InstanceList) -> dict:
        """Extract point-wise features from multi-input.

        Args:
            batch_inputs_dict (dict): The model input dict which include
                'points', 'voxels' keys.

                - points (list[torch.Tensor]): Point cloud of each sample.
                - voxels (dict[torch.Tensor]): Voxels of the batch sample.
            feats_dict (dict): Contains features from the first
                stage.
            rpn_results_list (List[:obj:`InstanceData`]): Detection results
                of rpn head.

        Returns:
            dict: Contain Point-wise features, include:
                - keypoints (torch.Tensor): Sampled key points.
                - keypoint_features (torch.Tensor): Gathered key points
                    features from multi input.
                - fusion_keypoint_features (torch.Tensor): Fusion
                    keypoint_features by point_feature_fusion_layer.
        """
        points = batch_inputs_dict['points']
        voxel_encode_features = feats_dict['multi_scale_3d_feats']
        bev_encode_features = feats_dict['spatial_feats']
        if self.voxel_center_as_source:
            voxels_coors = batch_inputs_dict['voxels']['coors']
        else:
            voxels_coors = None
        keypoints = self.sample_key_points(points, voxels_coors)

        point_features_list = []
        batch_size = len(points)

        if self.bev_cfg is not None:
            point_bev_features = self.interpolate_from_bev_features(
                keypoints, bev_encode_features, batch_size,
                self.bev_cfg.bev_scale_factor)
            point_features_list.append(point_bev_features.contiguous())

        batch_size, num_keypoints, _ = keypoints.shape
        key_xyz = keypoints.view(-1, 3)
        key_xyz_batch_cnt = key_xyz.new_zeros(batch_size).int().fill_(
            num_keypoints)

        if self.rawpoints_sa_layer is not None:
            batch_points = torch.cat(points, dim=0)
            batch_cnt = [len(p) for p in points]
            xyz = batch_points[:, :3].contiguous()
            features = None
            if batch_points.size(1) > 0:
                features = batch_points[:, 3:].contiguous()
            xyz_batch_cnt = xyz.new_tensor(batch_cnt, dtype=torch.int32)

            pooled_points, pooled_features = self.rawpoints_sa_layer(
                xyz=xyz.contiguous(),
                xyz_batch_cnt=xyz_batch_cnt,
                new_xyz=key_xyz.contiguous(),
                new_xyz_batch_cnt=key_xyz_batch_cnt,
                features=features.contiguous(),
            )

            point_features_list.append(pooled_features.contiguous().view(
                batch_size, num_keypoints, -1))
        if self.voxel_sa_layers is not None:
            for k, voxel_sa_layer in enumerate(self.voxel_sa_layers):
                cur_coords = voxel_encode_features[k].indices
                xyz = self.get_voxel_centers(
                    coors=cur_coords,
                    scale_factor=self.voxel_sa_configs_list[k].scale_factor
                ).contiguous()
                xyz_batch_cnt = xyz.new_zeros(batch_size).int()
                for bs_idx in range(batch_size):
                    xyz_batch_cnt[bs_idx] = (cur_coords[:, 0] == bs_idx).sum()

                pooled_points, pooled_features = voxel_sa_layer(
                    xyz=xyz.contiguous(),
                    xyz_batch_cnt=xyz_batch_cnt,
                    new_xyz=key_xyz.contiguous(),
                    new_xyz_batch_cnt=key_xyz_batch_cnt,
                    features=voxel_encode_features[k].features.contiguous(),
                )
                point_features_list.append(pooled_features.contiguous().view(
                    batch_size, num_keypoints, -1))

        point_features = torch.cat(
            point_features_list, dim=-1).view(batch_size * num_keypoints, -1,
                                              1)

        fusion_point_features = self.point_feature_fusion_layer(
            point_features.unsqueeze(dim=-1)).squeeze(dim=-1)

        batch_idxs = torch.arange(
            batch_size * num_keypoints, device=keypoints.device
        ) // num_keypoints  # batch indexes of each key points
        batch_keypoints_xyz = torch.cat(
            (batch_idxs.to(key_xyz.dtype).unsqueeze(dim=-1), key_xyz), dim=-1)

        return dict(
            keypoint_features=point_features.squeeze(dim=-1),
            fusion_keypoint_features=fusion_point_features.squeeze(dim=-1),
            keypoints=batch_keypoints_xyz)