"tests/schedulers/test_scheduler_unclip.py" did not exist on "6a7a5467cab6df8bb24b20a7ad3f2223c1a2e8de"
monoflex_head.py 35.7 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
from typing import List, Optional, Tuple, Union

ChaimZhu's avatar
ChaimZhu committed
4
import torch
5
6
7
8
9
from mmdet.models.utils import (gaussian_radius, gen_gaussian_target,
                                multi_apply)
from mmdet.models.utils.gaussian_target import (get_local_maximum,
                                                get_topk_from_heatmap,
                                                transpose_and_gather_feat)
10
from mmengine.config import ConfigDict
11
12
from mmengine.model import xavier_init
from mmengine.structures import InstanceData
13
from torch import Tensor
ChaimZhu's avatar
ChaimZhu committed
14
15
from torch import nn as nn

zhangshilong's avatar
zhangshilong committed
16
17
from mmdet3d.models.layers import EdgeFusionModule
from mmdet3d.models.task_modules.builder import build_bbox_coder
ChaimZhu's avatar
ChaimZhu committed
18
from mmdet3d.models.utils import (filter_outside_objs, get_edge_indices,
zhangshilong's avatar
zhangshilong committed
19
20
                                  get_ellip_gaussian_2D, get_keypoints,
                                  handle_proj_objs)
21
from mmdet3d.registry import MODELS
zhangshilong's avatar
zhangshilong committed
22
from mmdet3d.structures import Det3DDataSample
ChaimZhu's avatar
ChaimZhu committed
23
24
25
from .anchor_free_mono3d_head import AnchorFreeMono3DHead


26
@MODELS.register_module()
ChaimZhu's avatar
ChaimZhu committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
class MonoFlexHead(AnchorFreeMono3DHead):
    r"""MonoFlex head used in `MonoFlex <https://arxiv.org/abs/2104.02323>`_

    .. code-block:: none

                / --> 3 x 3 conv --> 1 x 1 conv --> [edge fusion] --> cls
                |
                | --> 3 x 3 conv --> 1 x 1 conv --> 2d bbox
                |
                | --> 3 x 3 conv --> 1 x 1 conv --> [edge fusion] --> 2d offsets
                |
                | --> 3 x 3 conv --> 1 x 1 conv -->  keypoints offsets
                |
                | --> 3 x 3 conv --> 1 x 1 conv -->  keypoints uncertainty
        feature
                | --> 3 x 3 conv --> 1 x 1 conv -->  keypoints uncertainty
                |
                | --> 3 x 3 conv --> 1 x 1 conv -->   3d dimensions
                |
                |                  |--- 1 x 1 conv -->  ori cls
                | --> 3 x 3 conv --|
                |                  |--- 1 x 1 conv -->  ori offsets
                |
                | --> 3 x 3 conv --> 1 x 1 conv -->  depth
                |
                \ --> 3 x 3 conv --> 1 x 1 conv -->  depth uncertainty

    Args:
        use_edge_fusion (bool): Whether to use edge fusion module while
            feature extraction.
        edge_fusion_inds (list[tuple]): Indices of feature to use edge fusion.
        edge_heatmap_ratio (float): Ratio of generating target heatmap.
        filter_outside_objs (bool, optional): Whether to filter the
            outside objects. Default: True.
        loss_cls (dict, optional): Config of classification loss.
            Default: loss_cls=dict(type='GaussionFocalLoss', loss_weight=1.0).
        loss_bbox (dict, optional): Config of localization loss.
            Default: loss_bbox=dict(type='IOULoss', loss_weight=10.0).
        loss_dir (dict, optional): Config of direction classification loss.
            Default: dict(type='MultibinLoss', loss_weight=0.1).
        loss_keypoints (dict, optional): Config of keypoints loss.
            Default: dict(type='L1Loss', loss_weight=0.1).
        loss_dims: (dict, optional): Config of dimensions loss.
            Default: dict(type='L1Loss', loss_weight=0.1).
71
        loss_offsets_2d: (dict, optional): Config of offsets_2d loss.
ChaimZhu's avatar
ChaimZhu committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
            Default: dict(type='L1Loss', loss_weight=0.1).
        loss_direct_depth: (dict, optional): Config of directly regression depth loss.
            Default: dict(type='L1Loss', loss_weight=0.1).
        loss_keypoints_depth: (dict, optional): Config of keypoints decoded depth loss.
            Default: dict(type='L1Loss', loss_weight=0.1).
        loss_combined_depth: (dict, optional): Config of combined depth loss.
            Default: dict(type='L1Loss', loss_weight=0.1).
        loss_attr (dict, optional): Config of attribute classification loss.
            In MonoFlex, Default: None.
        bbox_coder (dict, optional): Bbox coder for encoding and decoding boxes.
            Default: dict(type='MonoFlexCoder', code_size=7).
        norm_cfg (dict, optional): Dictionary to construct and config norm layer.
            Default: norm_cfg=dict(type='GN', num_groups=32, requires_grad=True).
        init_cfg (dict): Initialization config dict. Default: None.
    """  # noqa: E501

    def __init__(self,
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
                 num_classes: int,
                 in_channels: int,
                 use_edge_fusion: bool,
                 edge_fusion_inds: List[Tuple],
                 edge_heatmap_ratio: float,
                 filter_outside_objs: bool = True,
                 loss_cls: dict = dict(
                     type='mmdet.GaussianFocalLoss', loss_weight=1.0),
                 loss_bbox: dict = dict(type='mmdet.IoULoss', loss_weight=0.1),
                 loss_dir: dict = dict(type='MultiBinLoss', loss_weight=0.1),
                 loss_keypoints: dict = dict(
                     type='mmdet.L1Loss', loss_weight=0.1),
                 loss_dims: dict = dict(type='mmdet.L1Loss', loss_weight=0.1),
                 loss_offsets_2d: dict = dict(
                     type='mmdet.L1Loss', loss_weight=0.1),
                 loss_direct_depth: dict = dict(
                     type='mmdet.L1Loss', loss_weight=0.1),
                 loss_keypoints_depth: dict = dict(
                     type='mmdet.L1Loss', loss_weight=0.1),
                 loss_combined_depth: dict = dict(
                     type='mmdet.L1Loss', loss_weight=0.1),
                 loss_attr: Optional[dict] = None,
                 bbox_coder: dict = dict(type='MonoFlexCoder', code_size=7),
                 norm_cfg: Union[ConfigDict, dict] = dict(type='BN'),
                 init_cfg: Optional[Union[ConfigDict, dict]] = None,
                 init_bias: float = -2.19,
                 **kwargs) -> None:
ChaimZhu's avatar
ChaimZhu committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
        self.use_edge_fusion = use_edge_fusion
        self.edge_fusion_inds = edge_fusion_inds
        super().__init__(
            num_classes,
            in_channels,
            loss_cls=loss_cls,
            loss_bbox=loss_bbox,
            loss_dir=loss_dir,
            loss_attr=loss_attr,
            norm_cfg=norm_cfg,
            init_cfg=init_cfg,
            **kwargs)
        self.filter_outside_objs = filter_outside_objs
        self.edge_heatmap_ratio = edge_heatmap_ratio
        self.init_bias = init_bias
131
132
133
134
135
136
137
        self.loss_dir = MODELS.build(loss_dir)
        self.loss_keypoints = MODELS.build(loss_keypoints)
        self.loss_dims = MODELS.build(loss_dims)
        self.loss_offsets_2d = MODELS.build(loss_offsets_2d)
        self.loss_direct_depth = MODELS.build(loss_direct_depth)
        self.loss_keypoints_depth = MODELS.build(loss_keypoints_depth)
        self.loss_combined_depth = MODELS.build(loss_combined_depth)
ChaimZhu's avatar
ChaimZhu committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        self.bbox_coder = build_bbox_coder(bbox_coder)

    def _init_edge_module(self):
        """Initialize edge fusion module for feature extraction."""
        self.edge_fuse_cls = EdgeFusionModule(self.num_classes, 256)
        for i in range(len(self.edge_fusion_inds)):
            reg_inds, out_inds = self.edge_fusion_inds[i]
            out_channels = self.group_reg_dims[reg_inds][out_inds]
            fusion_layer = EdgeFusionModule(out_channels, 256)
            layer_name = f'edge_fuse_reg_{reg_inds}_{out_inds}'
            self.add_module(layer_name, fusion_layer)

    def init_weights(self):
        """Initialize weights."""
        super().init_weights()
        self.conv_cls.bias.data.fill_(self.init_bias)
        xavier_init(self.conv_regs[4][0], gain=0.01)
        xavier_init(self.conv_regs[7][0], gain=0.01)
        for m in self.conv_regs.modules():
            if isinstance(m, nn.Conv2d):
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)

    def _init_predictor(self):
        """Initialize predictor layers of the head."""
        self.conv_cls_prev = self._init_branch(
            conv_channels=self.cls_branch,
            conv_strides=(1, ) * len(self.cls_branch))
        self.conv_cls = nn.Conv2d(self.cls_branch[-1], self.cls_out_channels,
                                  1)
        # init regression head
        self.conv_reg_prevs = nn.ModuleList()
        # init output head
        self.conv_regs = nn.ModuleList()
        # group_reg_dims:
        # ((4, ), (2, ), (20, ), (3, ), (3, ), (8, 8), (1, ), (1, ))
        for i in range(len(self.group_reg_dims)):
            reg_dims = self.group_reg_dims[i]
            reg_branch_channels = self.reg_branch[i]
            out_channel = self.out_channels[i]
            reg_list = nn.ModuleList()
            if len(reg_branch_channels) > 0:
                self.conv_reg_prevs.append(
                    self._init_branch(
                        conv_channels=reg_branch_channels,
                        conv_strides=(1, ) * len(reg_branch_channels)))
                for reg_dim in reg_dims:
                    reg_list.append(nn.Conv2d(out_channel, reg_dim, 1))
                self.conv_regs.append(reg_list)
            else:
                self.conv_reg_prevs.append(None)
                for reg_dim in reg_dims:
                    reg_list.append(nn.Conv2d(self.feat_channels, reg_dim, 1))
                self.conv_regs.append(reg_list)

    def _init_layers(self):
        """Initialize layers of the head."""
        self._init_predictor()
        if self.use_edge_fusion:
            self._init_edge_module()

ZCMax's avatar
ZCMax committed
199
200
    def loss(self, x: List[Tensor], batch_data_samples: List[Det3DDataSample],
             **kwargs):
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
        """
        Args:
            x (list[Tensor]): Features from FPN.
            batch_data_samples (list[:obj:`Det3DDataSample`]): Each item
                contains the meta information of each image and corresponding
                annotations.
            proposal_cfg (mmengine.Config, optional): Test / postprocessing
                configuration, if None, test_cfg would be used.
                Defaults to None.

        Returns:
            tuple or Tensor: When `proposal_cfg` is None, the detector is a \
            normal one-stage detector, The return value is the losses.

            - losses: (dict[str, Tensor]): A dictionary of loss components.

            When the `proposal_cfg` is not None, the head is used as a
            `rpn_head`, the return value is a tuple contains:

            - losses: (dict[str, Tensor]): A dictionary of loss components.
            - results_list (list[:obj:`InstanceData`]): Detection
              results of each image after the post process.
              Each item usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes (:obj:`BaseInstance3DBoxes`): Contains a tensor
                  with shape (num_instances, C), the last dimension C of a
                  3D box is (x, y, z, x_size, y_size, z_size, yaw, ...), where
                  C >= 7. C = 7 for kitti and C = 9 for nuscenes with extra 2
                  dims of velocity.
        """

        batch_gt_instances_3d = []
ZCMax's avatar
ZCMax committed
237
        batch_gt_instances = []
238
239
240
241
242
        batch_gt_instances_ignore = []
        batch_img_metas = []
        for data_sample in batch_data_samples:
            batch_img_metas.append(data_sample.metainfo)
            batch_gt_instances_3d.append(data_sample.gt_instances_3d)
ZCMax's avatar
ZCMax committed
243
244
245
            batch_gt_instances.append(data_sample.gt_instances)
            batch_gt_instances_ignore.append(
                data_sample.get('ignored_instances', None))
246
247
248
249
250
251
252

        # monoflex head needs img_metas for feature extraction
        outs = self(x, batch_img_metas)
        loss_inputs = outs + (batch_gt_instances_3d, batch_img_metas,
                              batch_gt_instances_ignore)
        losses = self.loss(*loss_inputs)

ZCMax's avatar
ZCMax committed
253
        return losses
ChaimZhu's avatar
ChaimZhu committed
254

255
    def forward(self, feats: List[Tensor], batch_img_metas: List[dict]):
ChaimZhu's avatar
ChaimZhu committed
256
257
258
259
260
        """Forward features from the upstream network.

        Args:
            feats (list[Tensor]): Features from the upstream network, each is
                a 4D-tensor.
261
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
ChaimZhu's avatar
ChaimZhu committed
262
263
264
265
266
267
268
269
270
271
272
                image size, scaling factor, etc.

        Returns:
            tuple:
                cls_scores (list[Tensor]): Box scores for each scale level,
                    each is a 4D-tensor, the channel number is
                    num_points * num_classes.
                bbox_preds (list[Tensor]): Box energies / deltas for each scale
                    level, each is a 4D-tensor, the channel number is
                    num_points * bbox_code_size.
        """
273
274
        mlvl_batch_img_metas = [batch_img_metas for i in range(len(feats))]
        return multi_apply(self.forward_single, feats, mlvl_batch_img_metas)
ChaimZhu's avatar
ChaimZhu committed
275

276
    def forward_single(self, x: Tensor, batch_img_metas: List[dict]):
ChaimZhu's avatar
ChaimZhu committed
277
278
279
280
        """Forward features of a single scale level.

        Args:
            x (Tensor): Feature maps from a specific FPN feature level.
281
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
ChaimZhu's avatar
ChaimZhu committed
282
283
284
285
286
                image size, scaling factor, etc.

        Returns:
            tuple: Scores for each class, bbox predictions.
        """
287
        img_h, img_w = batch_img_metas[0]['pad_shape'][:2]
ChaimZhu's avatar
ChaimZhu committed
288
289
290
291
292
293
294
295
296
297
        batch_size, _, feat_h, feat_w = x.shape
        downsample_ratio = img_h / feat_h

        for conv_cls_prev_layer in self.conv_cls_prev:
            cls_feat = conv_cls_prev_layer(x)
        out_cls = self.conv_cls(cls_feat)

        if self.use_edge_fusion:
            # calculate the edge indices for the batch data
            edge_indices_list = get_edge_indices(
298
                batch_img_metas, downsample_ratio, device=x.device)
ChaimZhu's avatar
ChaimZhu committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
            edge_lens = [
                edge_indices.shape[0] for edge_indices in edge_indices_list
            ]
            max_edge_len = max(edge_lens)
            edge_indices = x.new_zeros((batch_size, max_edge_len, 2),
                                       dtype=torch.long)
            for i in range(batch_size):
                edge_indices[i, :edge_lens[i]] = edge_indices_list[i]
            # cls feature map edge fusion
            out_cls = self.edge_fuse_cls(cls_feat, out_cls, edge_indices,
                                         edge_lens, feat_h, feat_w)

        bbox_pred = []

        for i in range(len(self.group_reg_dims)):
            reg_feat = x.clone()
            # feature regression head
            if len(self.reg_branch[i]) > 0:
                for conv_reg_prev_layer in self.conv_reg_prevs[i]:
                    reg_feat = conv_reg_prev_layer(reg_feat)

            for j, conv_reg in enumerate(self.conv_regs[i]):
                out_reg = conv_reg(reg_feat)
                #  Use Edge Fusion Module
                if self.use_edge_fusion and (i, j) in self.edge_fusion_inds:
                    # reg feature map edge fusion
                    out_reg = getattr(self, 'edge_fuse_reg_{}_{}'.format(
                        i, j))(reg_feat, out_reg, edge_indices, edge_lens,
                               feat_h, feat_w)
                bbox_pred.append(out_reg)

        bbox_pred = torch.cat(bbox_pred, dim=1)
        cls_score = out_cls.sigmoid()  # turn to 0-1
        cls_score = cls_score.clamp(min=1e-4, max=1 - 1e-4)

        return cls_score, bbox_pred

ZCMax's avatar
ZCMax committed
336
337
    def predict_by_feat(self, cls_scores: List[Tensor],
                        bbox_preds: List[Tensor], batch_img_metas: List[dict]):
ChaimZhu's avatar
ChaimZhu committed
338
339
340
341
342
        """Generate bboxes from bbox head predictions.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level.
            bbox_preds (list[Tensor]): Box regression for each scale.
343
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
ChaimZhu's avatar
ChaimZhu committed
344
345
346
347
348
349
350
351
352
                image size, scaling factor, etc.
            rescale (bool): If True, return boxes in original image space.
        Returns:
            list[tuple[:obj:`CameraInstance3DBoxes`, Tensor, Tensor, None]]:
                Each item in result_list is 4-tuple.
        """
        assert len(cls_scores) == len(bbox_preds) == 1
        cam2imgs = torch.stack([
            cls_scores[0].new_tensor(input_meta['cam2img'])
353
            for input_meta in batch_img_metas
ChaimZhu's avatar
ChaimZhu committed
354
        ])
ZCMax's avatar
ZCMax committed
355
        batch_bboxes, batch_scores, batch_topk_labels = self._decode_heatmap(
ChaimZhu's avatar
ChaimZhu committed
356
357
            cls_scores[0],
            bbox_preds[0],
358
            batch_img_metas,
ChaimZhu's avatar
ChaimZhu committed
359
360
361
362
363
            cam2imgs=cam2imgs,
            topk=100,
            kernel=3)

        result_list = []
364
        for img_id in range(len(batch_img_metas)):
ChaimZhu's avatar
ChaimZhu committed
365
366
367
368
369
370
371
372
373
374

            bboxes = batch_bboxes[img_id]
            scores = batch_scores[img_id]
            labels = batch_topk_labels[img_id]

            keep_idx = scores > 0.25
            bboxes = bboxes[keep_idx]
            scores = scores[keep_idx]
            labels = labels[keep_idx]

375
            bboxes = batch_img_metas[img_id]['box_type_3d'](
ChaimZhu's avatar
ChaimZhu committed
376
377
                bboxes, box_dim=self.bbox_code_size, origin=(0.5, 0.5, 0.5))
            attrs = None
378
379
380
381
382
383
384
385
386
387

            results = InstanceData()
            results.bboxes_3d = bboxes
            results.scores_3d = scores
            results.labels_3d = labels

            if attrs is not None:
                results.attr_labels = attrs

            result_list.append(results)
ChaimZhu's avatar
ChaimZhu committed
388
389
390

        return result_list

ZCMax's avatar
ZCMax committed
391
392
393
394
395
396
397
    def _decode_heatmap(self,
                        cls_score: Tensor,
                        reg_pred: Tensor,
                        batch_img_metas: List[dict],
                        cam2imgs: Tensor,
                        topk: int = 100,
                        kernel: int = 3):
ChaimZhu's avatar
ChaimZhu committed
398
399
400
401
402
403
404
        """Transform outputs into detections raw bbox predictions.

        Args:
            class_score (Tensor): Center predict heatmap,
                shape (B, num_classes, H, W).
            reg_pred (Tensor): Box regression map.
                shape (B, channel, H , W).
405
            batch_img_metas (List[dict]): Meta information of each image, e.g.,
ChaimZhu's avatar
ChaimZhu committed
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
                image size, scaling factor, etc.
            cam2imgs (Tensor): Camera intrinsic matrix.
                shape (N, 4, 4)
            topk (int, optional): Get top k center keypoints from heatmap.
                Default 100.
            kernel (int, optional): Max pooling kernel for extract local
                maximum pixels. Default 3.

        Returns:
            tuple[torch.Tensor]: Decoded output of SMOKEHead, containing
               the following Tensors:
              - batch_bboxes (Tensor): Coords of each 3D box.
                    shape (B, k, 7)
              - batch_scores (Tensor): Scores of each 3D box.
                    shape (B, k)
              - batch_topk_labels (Tensor): Categories of each 3D box.
                    shape (B, k)
        """
424
        img_h, img_w = batch_img_metas[0]['pad_shape'][:2]
ChaimZhu's avatar
ChaimZhu committed
425
426
427
428
429
430
431
432
433
434
435
436
        batch_size, _, feat_h, feat_w = cls_score.shape

        downsample_ratio = img_h / feat_h
        center_heatmap_pred = get_local_maximum(cls_score, kernel=kernel)

        *batch_dets, topk_ys, topk_xs = get_topk_from_heatmap(
            center_heatmap_pred, k=topk)
        batch_scores, batch_index, batch_topk_labels = batch_dets

        regression = transpose_and_gather_feat(reg_pred, batch_index)
        regression = regression.view(-1, 8)

437
        pred_base_centers_2d = torch.cat(
ChaimZhu's avatar
ChaimZhu committed
438
439
440
441
442
            [topk_xs.view(-1, 1),
             topk_ys.view(-1, 1).float()], dim=1)
        preds = self.bbox_coder.decode(regression, batch_topk_labels,
                                       downsample_ratio, cam2imgs)
        pred_locations = self.bbox_coder.decode_location(
443
            pred_base_centers_2d, preds['offsets_2d'], preds['combined_depth'],
ChaimZhu's avatar
ChaimZhu committed
444
445
446
447
448
449
450
451
            cam2imgs, downsample_ratio)
        pred_yaws = self.bbox_coder.decode_orientation(
            preds['orientations']).unsqueeze(-1)
        pred_dims = preds['dimensions']
        batch_bboxes = torch.cat((pred_locations, pred_dims, pred_yaws), dim=1)
        batch_bboxes = batch_bboxes.view(batch_size, -1, self.bbox_code_size)
        return batch_bboxes, batch_scores, batch_topk_labels

452
453
    def get_predictions(self, pred_reg, labels3d, centers_2d, reg_mask,
                        batch_indices, batch_img_metas, downsample_ratio):
ChaimZhu's avatar
ChaimZhu committed
454
455
456
457
458
459
460
        """Prepare predictions for computing loss.

        Args:
            pred_reg (Tensor): Box regression map.
                shape (B, channel, H , W).
            labels3d (Tensor): Labels of each 3D box.
                shape (B * max_objs, )
461
            centers_2d (Tensor): Coords of each projected 3D box
ChaimZhu's avatar
ChaimZhu committed
462
463
464
465
466
                center on image. shape (N, 2)
            reg_mask (Tensor): Indexes of the existence of the 3D box.
                shape (B * max_objs, )
            batch_indices (Tenosr): Batch indices of the 3D box.
                shape (N, 3)
467
468
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
ChaimZhu's avatar
ChaimZhu committed
469
470
471
472
473
474
475
476
            downsample_ratio (int): The stride of feature map.

        Returns:
            dict: The predictions for computing loss.
        """
        batch, channel = pred_reg.shape[0], pred_reg.shape[1]
        w = pred_reg.shape[3]
        cam2imgs = torch.stack([
477
478
            centers_2d.new_tensor(img_meta['cam2img'])
            for img_meta in batch_img_metas
ChaimZhu's avatar
ChaimZhu committed
479
480
481
        ])
        # (batch_size, 4, 4) -> (N, 4, 4)
        cam2imgs = cam2imgs[batch_indices, :, :]
482
483
484
        centers_2d_inds = centers_2d[:, 1] * w + centers_2d[:, 0]
        centers_2d_inds = centers_2d_inds.view(batch, -1)
        pred_regression = transpose_and_gather_feat(pred_reg, centers_2d_inds)
ChaimZhu's avatar
ChaimZhu committed
485
486
487
488
489
490
        pred_regression_pois = pred_regression.view(-1, channel)[reg_mask]
        preds = self.bbox_coder.decode(pred_regression_pois, labels3d,
                                       downsample_ratio, cam2imgs)

        return preds

491
    def get_targets(self, batch_gt_instances_3d: List[InstanceData],
ZCMax's avatar
ZCMax committed
492
                    batch_gt_instances: List[InstanceData],
493
                    feat_shape: Tuple[int], batch_img_metas: List[dict]):
ChaimZhu's avatar
ChaimZhu committed
494
495
496
        """Get training targets for batch images.
``
        Args:
497
            batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
ZCMax's avatar
ZCMax committed
498
499
500
501
                gt_instance_3d.  It usually includes ``bboxes_3d``、
                ``labels_3d``、``depths``、``centers_2d`` and attributes.
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance.  It usually includes ``bboxes``、``labels``.
ChaimZhu's avatar
ChaimZhu committed
502
503
            feat_shape (tuple[int]): Feature map shape with value,
                shape (B, _, H, W).
504
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
ChaimZhu's avatar
ChaimZhu committed
505
506
                image size, scaling factor, etc.

507

ChaimZhu's avatar
ChaimZhu committed
508
509
510
        Returns:
            tuple[Tensor, dict]: The Tensor value is the targets of
                center heatmap, the dict has components below:
511
512
513
              - base_centers_2d_target (Tensor): Coords of each projected
                    3D box center on image. shape (B * max_objs, 2),
                    [dtype: int]
ChaimZhu's avatar
ChaimZhu committed
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
              - labels3d (Tensor): Labels of each 3D box.
                    shape (N, )
              - reg_mask (Tensor): Mask of the existence of the 3D box.
                    shape (B * max_objs, )
              - batch_indices (Tensor): Batch id of the 3D box.
                    shape (N, )
              - depth_target (Tensor): Depth target of each 3D box.
                    shape (N, )
              - keypoints2d_target (Tensor): Keypoints of each projected 3D box
                    on image. shape (N, 10, 2)
              - keypoints_mask (Tensor): Keypoints mask of each projected 3D
                    box on image. shape (N, 10)
              - keypoints_depth_mask (Tensor): Depths decoded from keypoints
                    of each 3D box. shape (N, 3)
              - orientations_target (Tensor): Orientation (encoded local yaw)
                    target of each 3D box. shape (N, )
530
              - offsets_2d_target (Tensor): Offsets target of each projected
ChaimZhu's avatar
ChaimZhu committed
531
532
533
534
535
536
                    3D box. shape (N, 2)
              - dimensions_target (Tensor): Dimensions target of each 3D box.
                    shape (N, 3)
              - downsample_ratio (int): The stride of feature map.
        """

537
        gt_bboxes_list = [
ZCMax's avatar
ZCMax committed
538
            gt_instances.bboxes for gt_instances in batch_gt_instances
539
540
        ]
        gt_labels_list = [
ZCMax's avatar
ZCMax committed
541
            gt_instances.labels for gt_instances in batch_gt_instances
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
        ]
        gt_bboxes_3d_list = [
            gt_instances_3d.bboxes_3d
            for gt_instances_3d in batch_gt_instances_3d
        ]
        gt_labels_3d_list = [
            gt_instances_3d.labels_3d
            for gt_instances_3d in batch_gt_instances_3d
        ]
        centers_2d_list = [
            gt_instances_3d.centers_2d
            for gt_instances_3d in batch_gt_instances_3d
        ]
        depths_list = [
            gt_instances_3d.depths for gt_instances_3d in batch_gt_instances_3d
        ]

        img_h, img_w = batch_img_metas[0]['pad_shape'][:2]
ChaimZhu's avatar
ChaimZhu committed
560
561
562
563
564
565
566
567
568
569
570
        batch_size, _, feat_h, feat_w = feat_shape

        width_ratio = float(feat_w / img_w)  # 1/4
        height_ratio = float(feat_h / img_h)  # 1/4

        assert width_ratio == height_ratio

        # Whether to filter the objects which are not in FOV.
        if self.filter_outside_objs:
            filter_outside_objs(gt_bboxes_list, gt_labels_list,
                                gt_bboxes_3d_list, gt_labels_3d_list,
571
                                centers_2d_list, batch_img_metas)
ChaimZhu's avatar
ChaimZhu committed
572

573
        # transform centers_2d to base centers_2d for regression and
ChaimZhu's avatar
ChaimZhu committed
574
        # heatmap generation.
575
576
577
        # centers_2d = int(base_centers_2d) + offsets_2d
        base_centers_2d_list, offsets_2d_list, trunc_mask_list = \
            handle_proj_objs(centers_2d_list, gt_bboxes_list, batch_img_metas)
ChaimZhu's avatar
ChaimZhu committed
578
579

        keypoints2d_list, keypoints_mask_list, keypoints_depth_mask_list = \
580
            get_keypoints(gt_bboxes_3d_list, centers_2d_list, batch_img_metas)
ChaimZhu's avatar
ChaimZhu committed
581
582
583
584
585
586
587
588
589

        center_heatmap_target = gt_bboxes_list[-1].new_zeros(
            [batch_size, self.num_classes, feat_h, feat_w])

        for batch_id in range(batch_size):
            # project gt_bboxes from input image to feat map
            gt_bboxes = gt_bboxes_list[batch_id] * width_ratio
            gt_labels = gt_labels_list[batch_id]

590
591
            # project base centers_2d from input image to feat map
            gt_base_centers_2d = base_centers_2d_list[batch_id] * width_ratio
ChaimZhu's avatar
ChaimZhu committed
592
593
            trunc_masks = trunc_mask_list[batch_id]

594
            for j, base_center2d in enumerate(gt_base_centers_2d):
ChaimZhu's avatar
ChaimZhu committed
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
                if trunc_masks[j]:
                    # for outside objects, generate ellipse heatmap
                    base_center2d_x_int, base_center2d_y_int = \
                        base_center2d.int()
                    scale_box_w = min(base_center2d_x_int - gt_bboxes[j][0],
                                      gt_bboxes[j][2] - base_center2d_x_int)
                    scale_box_h = min(base_center2d_y_int - gt_bboxes[j][1],
                                      gt_bboxes[j][3] - base_center2d_y_int)
                    radius_x = scale_box_w * self.edge_heatmap_ratio
                    radius_y = scale_box_h * self.edge_heatmap_ratio
                    radius_x, radius_y = max(0, int(radius_x)), max(
                        0, int(radius_y))
                    assert min(radius_x, radius_y) == 0
                    ind = gt_labels[j]
                    get_ellip_gaussian_2D(
                        center_heatmap_target[batch_id, ind],
                        [base_center2d_x_int, base_center2d_y_int], radius_x,
                        radius_y)
                else:
                    base_center2d_x_int, base_center2d_y_int = \
                        base_center2d.int()
                    scale_box_h = (gt_bboxes[j][3] - gt_bboxes[j][1])
                    scale_box_w = (gt_bboxes[j][2] - gt_bboxes[j][0])
                    radius = gaussian_radius([scale_box_h, scale_box_w],
                                             min_overlap=0.7)
                    radius = max(0, int(radius))
                    ind = gt_labels[j]
                    gen_gaussian_target(
                        center_heatmap_target[batch_id, ind],
                        [base_center2d_x_int, base_center2d_y_int], radius)

        avg_factor = max(1, center_heatmap_target.eq(1).sum())
627
        num_ctrs = [centers_2d.shape[0] for centers_2d in centers_2d_list]
ChaimZhu's avatar
ChaimZhu committed
628
629
        max_objs = max(num_ctrs)
        batch_indices = [
630
            centers_2d_list[0].new_full((num_ctrs[i], ), i)
ChaimZhu's avatar
ChaimZhu committed
631
632
633
634
635
            for i in range(batch_size)
        ]
        batch_indices = torch.cat(batch_indices, dim=0)
        reg_mask = torch.zeros(
            (batch_size, max_objs),
636
637
638
            dtype=torch.bool).to(base_centers_2d_list[0].device)
        gt_bboxes_3d = batch_img_metas[0]['box_type_3d'].cat(gt_bboxes_3d_list)
        gt_bboxes_3d = gt_bboxes_3d.to(base_centers_2d_list[0].device)
ChaimZhu's avatar
ChaimZhu committed
639
640
641
642

        # encode original local yaw to multibin format
        orienations_target = self.bbox_coder.encode(gt_bboxes_3d)

643
        batch_base_centers_2d = base_centers_2d_list[0].new_zeros(
ChaimZhu's avatar
ChaimZhu committed
644
645
646
647
            (batch_size, max_objs, 2))

        for i in range(batch_size):
            reg_mask[i, :num_ctrs[i]] = 1
648
            batch_base_centers_2d[i, :num_ctrs[i]] = base_centers_2d_list[i]
ChaimZhu's avatar
ChaimZhu committed
649
650
651

        flatten_reg_mask = reg_mask.flatten()

652
653
        # transform base centers_2d from input scale to output scale
        batch_base_centers_2d = batch_base_centers_2d.view(-1, 2) * width_ratio
ChaimZhu's avatar
ChaimZhu committed
654
655
656
657
658
659

        dimensions_target = gt_bboxes_3d.tensor[:, 3:6]
        labels_3d = torch.cat(gt_labels_3d_list)
        keypoints2d_target = torch.cat(keypoints2d_list)
        keypoints_mask = torch.cat(keypoints_mask_list)
        keypoints_depth_mask = torch.cat(keypoints_depth_mask_list)
660
        offsets_2d_target = torch.cat(offsets_2d_list)
ChaimZhu's avatar
ChaimZhu committed
661
662
663
664
665
666
667
668
        bboxes2d = torch.cat(gt_bboxes_list)

        # transform FCOS style bbox into [x1, y1, x2, y2] format.
        bboxes2d_target = torch.cat([bboxes2d[:, 0:2] * -1, bboxes2d[:, 2:]],
                                    dim=-1)
        depths = torch.cat(depths_list)

        target_labels = dict(
669
            base_centers_2d_target=batch_base_centers_2d.int(),
ChaimZhu's avatar
ChaimZhu committed
670
671
672
673
674
675
676
677
678
            labels3d=labels_3d,
            reg_mask=flatten_reg_mask,
            batch_indices=batch_indices,
            bboxes2d_target=bboxes2d_target,
            depth_target=depths,
            keypoints2d_target=keypoints2d_target,
            keypoints_mask=keypoints_mask,
            keypoints_depth_mask=keypoints_depth_mask,
            orienations_target=orienations_target,
679
            offsets_2d_target=offsets_2d_target,
ChaimZhu's avatar
ChaimZhu committed
680
681
682
683
684
            dimensions_target=dimensions_target,
            downsample_ratio=1 / width_ratio)

        return center_heatmap_target, avg_factor, target_labels

ZCMax's avatar
ZCMax committed
685
686
687
688
689
690
691
692
    def loss_by_feat(
            self,
            cls_scores: List[Tensor],
            bbox_preds: List[Tensor],
            batch_gt_instances_3d: List[InstanceData],
            batch_gt_instances: List[InstanceData],
            batch_img_metas: List[dict],
            batch_gt_instances_ignore: Optional[List[InstanceData]] = None):
ChaimZhu's avatar
ChaimZhu committed
693
694
695
696
697
698
699
700
        """Compute loss of the head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level.
                shape (num_gt, 4).
            bbox_preds (list[Tensor]): Box dims is a 4D-tensor, the channel
                number is bbox_code_size.
                shape (B, 7, H, W).
701
            batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
ZCMax's avatar
ZCMax committed
702
703
704
705
                gt_instance_3d.  It usually includes ``bboxes_3d``、
                ``labels_3d``、``depths``、``centers_2d`` and attributes.
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance.  It usually includes ``bboxes``、``labels``.
706
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
ChaimZhu's avatar
ChaimZhu committed
707
                image size, scaling factor, etc.
708
709
710
711
            batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.
ChaimZhu's avatar
ChaimZhu committed
712
713
714
715
716

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        assert len(cls_scores) == len(bbox_preds) == 1
717
        assert batch_gt_instances_ignore is None
ChaimZhu's avatar
ChaimZhu committed
718
719
720
721
        center2d_heatmap = cls_scores[0]
        pred_reg = bbox_preds[0]

        center2d_heatmap_target, avg_factor, target_labels = \
722
            self.get_targets(batch_gt_instances_3d,
ZCMax's avatar
ZCMax committed
723
                             batch_gt_instances,
ChaimZhu's avatar
ChaimZhu committed
724
                             center2d_heatmap.shape,
725
                             batch_img_metas)
ChaimZhu's avatar
ChaimZhu committed
726
727
728
729

        preds = self.get_predictions(
            pred_reg=pred_reg,
            labels3d=target_labels['labels3d'],
730
            centers_2d=target_labels['base_centers_2d_target'],
ChaimZhu's avatar
ChaimZhu committed
731
732
            reg_mask=target_labels['reg_mask'],
            batch_indices=target_labels['batch_indices'],
733
            batch_img_metas=batch_img_metas,
ChaimZhu's avatar
ChaimZhu committed
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
            downsample_ratio=target_labels['downsample_ratio'])

        # heatmap loss
        loss_cls = self.loss_cls(
            center2d_heatmap, center2d_heatmap_target, avg_factor=avg_factor)

        # bbox2d regression loss
        loss_bbox = self.loss_bbox(preds['bboxes2d'],
                                   target_labels['bboxes2d_target'])

        # keypoints loss, the keypoints in predictions and target are all
        # local coordinates. Check the mask dtype should be bool, not int
        # or float to ensure the indexing is bool index
        keypoints2d_mask = target_labels['keypoints2d_mask']
        loss_keypoints = self.loss_keypoints(
            preds['keypoints2d'][keypoints2d_mask],
            target_labels['keypoints2d_target'][keypoints2d_mask])

        # orientations loss
        loss_dir = self.loss_dir(preds['orientations'],
                                 target_labels['orientations_target'])

        # dimensions loss
        loss_dims = self.loss_dims(preds['dimensions'],
                                   target_labels['dimensions_target'])

        # offsets for center heatmap
761
762
        loss_offsets_2d = self.loss_offsets_2d(
            preds['offsets_2d'], target_labels['offsets_2d_target'])
ChaimZhu's avatar
ChaimZhu committed
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

        # directly regressed depth loss with direct depth uncertainty loss
        direct_depth_weights = torch.exp(-preds['direct_depth_uncertainty'])
        loss_weight_1 = self.loss_direct_depth.loss_weight
        loss_direct_depth = self.loss_direct_depth(
            preds['direct_depth'], target_labels['depth_target'],
            direct_depth_weights)
        loss_uncertainty_1 =\
            preds['direct_depth_uncertainty'] * loss_weight_1
        loss_direct_depth = loss_direct_depth + loss_uncertainty_1.mean()

        # keypoints decoded depth loss with keypoints depth uncertainty loss
        depth_mask = target_labels['keypoints_depth_mask']
        depth_target = target_labels['depth_target'].unsqueeze(-1).repeat(1, 3)
        valid_keypoints_depth_uncertainty = preds[
            'keypoints_depth_uncertainty'][depth_mask]
        valid_keypoints_depth_weights = torch.exp(
            -valid_keypoints_depth_uncertainty)
        loss_keypoints_depth = self.loss_keypoint_depth(
            preds['keypoints_depth'][depth_mask], depth_target[depth_mask],
            valid_keypoints_depth_weights)
        loss_weight_2 = self.loss_keypoints_depth.loss_weight
        loss_uncertainty_2 =\
            valid_keypoints_depth_uncertainty * loss_weight_2
        loss_keypoints_depth = loss_keypoints_depth + loss_uncertainty_2.mean()

        # combined depth loss for optimiaze the uncertainty
        loss_combined_depth = self.loss_combined_depth(
            preds['combined_depth'], target_labels['depth_target'])

        loss_dict = dict(
            loss_cls=loss_cls,
            loss_bbox=loss_bbox,
            loss_keypoints=loss_keypoints,
            loss_dir=loss_dir,
            loss_dims=loss_dims,
799
            loss_offsets_2d=loss_offsets_2d,
ChaimZhu's avatar
ChaimZhu committed
800
801
802
803
804
            loss_direct_depth=loss_direct_depth,
            loss_keypoints_depth=loss_keypoints_depth,
            loss_combined_depth=loss_combined_depth)

        return loss_dict