sassd_8xb6-80e_kitti-3d-3class.py 3.12 KB
Newer Older
Wenbo Yu's avatar
Wenbo Yu committed
1
2
_base_ = [
    '../_base_/datasets/kitti-3d-3class.py',
3
    '../_base_/schedules/cyclic-40e.py', '../_base_/default_runtime.py'
Wenbo Yu's avatar
Wenbo Yu committed
4
5
6
7
8
9
]

voxel_size = [0.05, 0.05, 0.1]

model = dict(
    type='SASSD',
10
11
12
13
14
15
16
17
    data_preprocessor=dict(
        type='Det3DDataPreprocessor',
        voxel=True,
        voxel_layer=dict(
            max_num_points=5,
            point_cloud_range=[0, -40, -3, 70.4, 40, 1],
            voxel_size=voxel_size,
            max_voxels=(16000, 40000))),
Wenbo Yu's avatar
Wenbo Yu committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
    voxel_encoder=dict(type='HardSimpleVFE'),
    middle_encoder=dict(
        type='SparseEncoderSASSD',
        in_channels=4,
        sparse_shape=[41, 1600, 1408],
        order=('conv', 'norm', 'act')),
    backbone=dict(
        type='SECOND',
        in_channels=256,
        layer_nums=[5, 5],
        layer_strides=[1, 2],
        out_channels=[128, 256]),
    neck=dict(
        type='SECONDFPN',
        in_channels=[128, 256],
        upsample_strides=[1, 2],
        out_channels=[256, 256]),
    bbox_head=dict(
        type='Anchor3DHead',
        num_classes=3,
        in_channels=512,
        feat_channels=512,
        use_direction_classifier=True,
        anchor_generator=dict(
            type='Anchor3DRangeGenerator',
            ranges=[
                [0, -40.0, -0.6, 70.4, 40.0, -0.6],
                [0, -40.0, -0.6, 70.4, 40.0, -0.6],
                [0, -40.0, -1.78, 70.4, 40.0, -1.78],
            ],
48
            sizes=[[0.8, 0.6, 1.73], [1.76, 0.6, 1.73], [3.9, 1.6, 1.56]],
Wenbo Yu's avatar
Wenbo Yu committed
49
50
51
52
53
            rotations=[0, 1.57],
            reshape_out=False),
        diff_rad_by_sin=True,
        bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
        loss_cls=dict(
54
            type='mmdet.FocalLoss',
Wenbo Yu's avatar
Wenbo Yu committed
55
56
57
58
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=1.0),
59
60
        loss_bbox=dict(
            type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
Wenbo Yu's avatar
Wenbo Yu committed
61
        loss_dir=dict(
62
63
            type='mmdet.CrossEntropyLoss', use_sigmoid=False,
            loss_weight=0.2)),
Wenbo Yu's avatar
Wenbo Yu committed
64
65
66
67
    # model training and testing settings
    train_cfg=dict(
        assigner=[
            dict(  # for Pedestrian
68
                type='Max3DIoUAssigner',
Wenbo Yu's avatar
Wenbo Yu committed
69
70
71
72
73
74
                iou_calculator=dict(type='BboxOverlapsNearest3D'),
                pos_iou_thr=0.35,
                neg_iou_thr=0.2,
                min_pos_iou=0.2,
                ignore_iof_thr=-1),
            dict(  # for Cyclist
75
                type='Max3DIoUAssigner',
Wenbo Yu's avatar
Wenbo Yu committed
76
77
78
79
80
81
                iou_calculator=dict(type='BboxOverlapsNearest3D'),
                pos_iou_thr=0.35,
                neg_iou_thr=0.2,
                min_pos_iou=0.2,
                ignore_iof_thr=-1),
            dict(  # for Car
82
                type='Max3DIoUAssigner',
Wenbo Yu's avatar
Wenbo Yu committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
                iou_calculator=dict(type='BboxOverlapsNearest3D'),
                pos_iou_thr=0.6,
                neg_iou_thr=0.45,
                min_pos_iou=0.45,
                ignore_iof_thr=-1),
        ],
        allowed_border=0,
        pos_weight=-1,
        debug=False),
    test_cfg=dict(
        use_rotate_nms=True,
        nms_across_levels=False,
        nms_thr=0.01,
        score_thr=0.1,
        min_bbox_size=0,
        nms_pre=100,
        max_num=50))