point-rcnn_8xb2_kitti-3d-3class.py 4.34 KB
Newer Older
1
2
_base_ = [
    '../_base_/datasets/kitti-3d-car.py', '../_base_/models/point_rcnn.py',
3
    '../_base_/default_runtime.py', '../_base_/schedules/cyclic-40e.py'
4
5
6
7
8
]

# dataset settings
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
9
class_names = ['Pedestrian', 'Cyclist', 'Car']
10
metainfo = dict(classes=class_names)
11
12
13
14
15
16
17
18
19
20
21
point_cloud_range = [0, -40, -3, 70.4, 40, 1]
input_modality = dict(use_lidar=True, use_camera=False)

db_sampler = dict(
    data_root=data_root,
    info_path=data_root + 'kitti_dbinfos_train.pkl',
    rate=1.0,
    prepare=dict(
        filter_by_difficulty=[-1],
        filter_by_min_points=dict(Car=5, Pedestrian=5, Cyclist=5)),
    sample_groups=dict(Car=20, Pedestrian=15, Cyclist=15),
22
23
24
    classes=class_names,
    points_loader=dict(
        type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4))
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

train_pipeline = [
    dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectSample', db_sampler=db_sampler),
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(
        type='ObjectNoise',
        num_try=100,
        translation_std=[1.0, 1.0, 0.5],
        global_rot_range=[0.0, 0.0],
        rot_range=[-0.78539816, 0.78539816]),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.78539816, 0.78539816],
        scale_ratio_range=[0.95, 1.05]),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='PointSample', num_points=16384, sample_range=40.0),
    dict(type='PointShuffle'),
46
47
48
    dict(
        type='Pack3DDetInputs',
        keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
]
test_pipeline = [
    dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4),
    dict(
        type='MultiScaleFlipAug3D',
        img_scale=(1333, 800),
        pts_scale_ratio=1,
        flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
            dict(type='RandomFlip3D'),
            dict(
                type='PointsRangeFilter', point_cloud_range=point_cloud_range),
66
67
68
            dict(type='PointSample', num_points=16384, sample_range=40.0)
        ]),
    dict(type='Pack3DDetInputs', keys=['points'])
69
]
70
71
72
73
train_dataloader = dict(
    batch_size=2,
    num_workers=2,
    dataset=dict(
74
75
        type='RepeatDataset',
        times=2,
76
77
78
        dataset=dict(pipeline=train_pipeline, metainfo=metainfo)))
test_dataloader = dict(dataset=dict(pipeline=test_pipeline, metainfo=metainfo))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline, metainfo=metainfo))
79
80

lr = 0.001  # max learning rate
81
82
83
optim_wrapper = dict(optimizer=dict(lr=lr, betas=(0.95, 0.85)))
train_cfg = dict(by_epoch=True, max_epochs=80, val_interval=2)

84
85
86
87
88
# Default setting for scaling LR automatically
#   - `enable` means enable scaling LR automatically
#       or not by default.
#   - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
param_scheduler = [
    # learning rate scheduler
    # During the first 35 epochs, learning rate increases from 0 to lr * 10
    # during the next 45 epochs, learning rate decreases from lr * 10 to
    # lr * 1e-4
    dict(
        type='CosineAnnealingLR',
        T_max=35,
        eta_min=lr * 10,
        begin=0,
        end=35,
        by_epoch=True,
        convert_to_iter_based=True),
    dict(
        type='CosineAnnealingLR',
        T_max=45,
        eta_min=lr * 1e-4,
        begin=35,
        end=80,
        by_epoch=True,
        convert_to_iter_based=True),
    # momentum scheduler
    # During the first 35 epochs, momentum increases from 0 to 0.85 / 0.95
    # during the next 45 epochs, momentum increases from 0.85 / 0.95 to 1
    dict(
        type='CosineAnnealingMomentum',
        T_max=35,
        eta_min=0.85 / 0.95,
        begin=0,
        end=35,
        by_epoch=True,
        convert_to_iter_based=True),
    dict(
        type='CosineAnnealingMomentum',
        T_max=45,
        eta_min=1,
        begin=35,
        end=80,
        by_epoch=True,
        convert_to_iter_based=True)
]