htc_r50_fpn_head-without-semantic_1x_nuim.py 7.6 KB
Newer Older
1
_base_ = [
2
3
    '../_base_/datasets/nuim-instance.py',
    '../_base_/schedules/mmdet-schedule-1x.py', '../_base_/default_runtime.py'
4
5
6
7
8
]
# model settings
model = dict(
    type='HybridTaskCascade',
    pretrained='torchvision://resnet50',
9
    _scope_='mmdet',
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    backbone=dict(
        type='ResNet',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
        norm_cfg=dict(type='BN', requires_grad=True),
        norm_eval=True,
        style='pytorch'),
    neck=dict(
        type='FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        num_outs=5),
    rpn_head=dict(
        type='RPNHead',
        in_channels=256,
        feat_channels=256,
        anchor_generator=dict(
            type='AnchorGenerator',
            scales=[8],
            ratios=[0.5, 1.0, 2.0],
            strides=[4, 8, 16, 32, 64]),
        bbox_coder=dict(
            type='DeltaXYWHBBoxCoder',
            target_means=[.0, .0, .0, .0],
            target_stds=[1.0, 1.0, 1.0, 1.0]),
        loss_cls=dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
        loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)),
    roi_head=dict(
        type='HybridTaskCascadeRoIHead',
        interleaved=True,
        mask_info_flow=True,
        num_stages=3,
        stage_loss_weights=[1, 0.5, 0.25],
        bbox_roi_extractor=dict(
            type='SingleRoIExtractor',
            roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
            out_channels=256,
            featmap_strides=[4, 8, 16, 32]),
        bbox_head=[
            dict(
                type='Shared2FCBBoxHead',
                in_channels=256,
                fc_out_channels=1024,
                roi_feat_size=7,
                num_classes=10,
                bbox_coder=dict(
                    type='DeltaXYWHBBoxCoder',
                    target_means=[0., 0., 0., 0.],
                    target_stds=[0.1, 0.1, 0.2, 0.2]),
                reg_class_agnostic=True,
                loss_cls=dict(
                    type='CrossEntropyLoss',
                    use_sigmoid=False,
                    loss_weight=1.0),
                loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
                               loss_weight=1.0)),
            dict(
                type='Shared2FCBBoxHead',
                in_channels=256,
                fc_out_channels=1024,
                roi_feat_size=7,
                num_classes=10,
                bbox_coder=dict(
                    type='DeltaXYWHBBoxCoder',
                    target_means=[0., 0., 0., 0.],
                    target_stds=[0.05, 0.05, 0.1, 0.1]),
                reg_class_agnostic=True,
                loss_cls=dict(
                    type='CrossEntropyLoss',
                    use_sigmoid=False,
                    loss_weight=1.0),
                loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
                               loss_weight=1.0)),
            dict(
                type='Shared2FCBBoxHead',
                in_channels=256,
                fc_out_channels=1024,
                roi_feat_size=7,
                num_classes=10,
                bbox_coder=dict(
                    type='DeltaXYWHBBoxCoder',
                    target_means=[0., 0., 0., 0.],
                    target_stds=[0.033, 0.033, 0.067, 0.067]),
                reg_class_agnostic=True,
                loss_cls=dict(
                    type='CrossEntropyLoss',
                    use_sigmoid=False,
                    loss_weight=1.0),
                loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
        ],
        mask_roi_extractor=dict(
            type='SingleRoIExtractor',
            roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0),
            out_channels=256,
            featmap_strides=[4, 8, 16, 32]),
        mask_head=[
            dict(
                type='HTCMaskHead',
                with_conv_res=False,
                num_convs=4,
                in_channels=256,
                conv_out_channels=256,
                num_classes=10,
                loss_mask=dict(
                    type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)),
            dict(
                type='HTCMaskHead',
                num_convs=4,
                in_channels=256,
                conv_out_channels=256,
                num_classes=10,
                loss_mask=dict(
                    type='CrossEntropyLoss', use_mask=True, loss_weight=1.0)),
            dict(
                type='HTCMaskHead',
                num_convs=4,
                in_channels=256,
                conv_out_channels=256,
                num_classes=10,
                loss_mask=dict(
                    type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))
134
135
136
137
        ]),
    # model training and testing settings
    train_cfg=dict(
        rpn=dict(
138
139
140
            assigner=dict(
                type='MaxIoUAssigner',
                pos_iou_thr=0.7,
141
142
                neg_iou_thr=0.3,
                min_pos_iou=0.3,
143
144
145
                ignore_iof_thr=-1),
            sampler=dict(
                type='RandomSampler',
146
147
                num=256,
                pos_fraction=0.5,
148
                neg_pos_ub=-1,
149
150
                add_gt_as_proposals=False),
            allowed_border=0,
151
            pos_weight=-1,
152
153
154
155
156
            debug=False),
        rpn_proposal=dict(
            nms_across_levels=False,
            nms_pre=2000,
            nms_post=2000,
157
158
            max_per_img=2000,
            nms=dict(type='nms', iou_threshold=0.7),
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
            min_bbox_size=0),
        rcnn=[
            dict(
                assigner=dict(
                    type='MaxIoUAssigner',
                    pos_iou_thr=0.5,
                    neg_iou_thr=0.5,
                    min_pos_iou=0.5,
                    ignore_iof_thr=-1),
                sampler=dict(
                    type='RandomSampler',
                    num=512,
                    pos_fraction=0.25,
                    neg_pos_ub=-1,
                    add_gt_as_proposals=True),
                mask_size=28,
                pos_weight=-1,
                debug=False),
            dict(
                assigner=dict(
                    type='MaxIoUAssigner',
                    pos_iou_thr=0.6,
                    neg_iou_thr=0.6,
                    min_pos_iou=0.6,
                    ignore_iof_thr=-1),
                sampler=dict(
                    type='RandomSampler',
                    num=512,
                    pos_fraction=0.25,
                    neg_pos_ub=-1,
                    add_gt_as_proposals=True),
                mask_size=28,
                pos_weight=-1,
                debug=False),
            dict(
                assigner=dict(
                    type='MaxIoUAssigner',
                    pos_iou_thr=0.7,
                    neg_iou_thr=0.7,
                    min_pos_iou=0.7,
                    ignore_iof_thr=-1),
                sampler=dict(
                    type='RandomSampler',
                    num=512,
                    pos_fraction=0.25,
                    neg_pos_ub=-1,
                    add_gt_as_proposals=True),
                mask_size=28,
                pos_weight=-1,
                debug=False)
        ]),
    test_cfg=dict(
        rpn=dict(
            nms_across_levels=False,
            nms_pre=1000,
            nms_post=1000,
215
216
            max_per_img=1000,
            nms=dict(type='nms', iou_threshold=0.7),
217
218
219
220
221
222
            min_bbox_size=0),
        rcnn=dict(
            score_thr=0.001,
            nms=dict(type='nms', iou_threshold=0.5),
            max_per_img=100,
            mask_thr_binary=0.5)))