scannet-3d.py 3.87 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
# dataset settings
dataset_type = 'ScanNetDataset'
ChaimZhu's avatar
ChaimZhu committed
3
data_root = 'data/scannet/'
jshilong's avatar
jshilong committed
4
5

metainfo = dict(
6
    classes=('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
jshilong's avatar
jshilong committed
7
8
9
             'bookshelf', 'picture', 'counter', 'desk', 'curtain',
             'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
             'garbagebin'))
10

11
# file_client_args = dict(backend='disk')
12
13
14
15
16
17
18
19
20
21
# Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details.
# file_client_args = dict(
#     backend='petrel',
#     path_mapping=dict({
#         './data/scannet/':
#         's3://scannet/',
#     }))

liyinhao's avatar
liyinhao committed
22
23
24
train_pipeline = [
    dict(
        type='LoadPointsFromFile',
25
        coord_type='DEPTH',
liyinhao's avatar
liyinhao committed
26
27
28
29
30
31
32
33
34
        shift_height=True,
        load_dim=6,
        use_dim=[0, 1, 2]),
    dict(
        type='LoadAnnotations3D',
        with_bbox_3d=True,
        with_label_3d=True,
        with_mask_3d=True,
        with_seg_3d=True),
35
    dict(type='GlobalAlignment', rotation_axis=2),
36
    dict(type='PointSegClassMapping'),
37
    dict(type='PointSample', num_points=40000),
liyinhao's avatar
liyinhao committed
38
    dict(
wuyuefeng's avatar
wuyuefeng committed
39
40
41
42
43
44
45
46
47
        type='RandomFlip3D',
        sync_2d=False,
        flip_ratio_bev_horizontal=0.5,
        flip_ratio_bev_vertical=0.5),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.087266, 0.087266],
        scale_ratio_range=[1.0, 1.0],
        shift_height=True),
liyinhao's avatar
liyinhao committed
48
    dict(
jshilong's avatar
jshilong committed
49
        type='Pack3DDetInputs',
liyinhao's avatar
liyinhao committed
50
51
52
53
54
55
56
57
        keys=[
            'points', 'gt_bboxes_3d', 'gt_labels_3d', 'pts_semantic_mask',
            'pts_instance_mask'
        ])
]
test_pipeline = [
    dict(
        type='LoadPointsFromFile',
58
        coord_type='DEPTH',
liyinhao's avatar
liyinhao committed
59
60
61
        shift_height=True,
        load_dim=6,
        use_dim=[0, 1, 2]),
62
    dict(type='GlobalAlignment', rotation_axis=2),
zhangwenwei's avatar
zhangwenwei committed
63
64
65
66
67
68
69
70
71
72
73
    dict(
        type='MultiScaleFlipAug3D',
        img_scale=(1333, 800),
        pts_scale_ratio=1,
        flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
wuyuefeng's avatar
wuyuefeng committed
74
75
76
77
78
            dict(
                type='RandomFlip3D',
                sync_2d=False,
                flip_ratio_bev_horizontal=0.5,
                flip_ratio_bev_vertical=0.5),
79
            dict(type='PointSample', num_points=40000),
jshilong's avatar
jshilong committed
80
81
        ]),
    dict(type='Pack3DDetInputs', keys=['points'])
82
]
liyinhao's avatar
liyinhao committed
83

jshilong's avatar
jshilong committed
84
85
86
87
88
train_dataloader = dict(
    batch_size=8,
    num_workers=4,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=dict(
liyinhao's avatar
liyinhao committed
89
90
91
92
93
        type='RepeatDataset',
        times=5,
        dataset=dict(
            type=dataset_type,
            data_root=data_root,
jshilong's avatar
jshilong committed
94
            ann_file='scannet_infos_train.pkl',
liyinhao's avatar
liyinhao committed
95
96
            pipeline=train_pipeline,
            filter_empty_gt=False,
jshilong's avatar
jshilong committed
97
            metainfo=metainfo,
wuyuefeng's avatar
Demo  
wuyuefeng committed
98
99
            # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
            # and box_type_3d='Depth' in sunrgbd and scannet dataset.
jshilong's avatar
jshilong committed
100
101
102
103
104
105
106
            box_type_3d='Depth')))

val_dataloader = dict(
    batch_size=1,
    num_workers=1,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
liyinhao's avatar
liyinhao committed
107
108
        type=dataset_type,
        data_root=data_root,
jshilong's avatar
jshilong committed
109
        ann_file='scannet_infos_val.pkl',
liyinhao's avatar
liyinhao committed
110
        pipeline=test_pipeline,
jshilong's avatar
jshilong committed
111
        metainfo=metainfo,
wuyuefeng's avatar
Demo  
wuyuefeng committed
112
        test_mode=True,
jshilong's avatar
jshilong committed
113
114
115
116
117
118
        box_type_3d='Depth'))
test_dataloader = dict(
    batch_size=1,
    num_workers=1,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
liyinhao's avatar
liyinhao committed
119
120
        type=dataset_type,
        data_root=data_root,
jshilong's avatar
jshilong committed
121
        ann_file='scannet_infos_val.pkl',
liyinhao's avatar
liyinhao committed
122
        pipeline=test_pipeline,
jshilong's avatar
jshilong committed
123
        metainfo=metainfo,
wuyuefeng's avatar
Demo  
wuyuefeng committed
124
125
        test_mode=True,
        box_type_3d='Depth'))
jshilong's avatar
jshilong committed
126
127
val_evaluator = dict(type='IndoorMetric')
test_evaluator = val_evaluator
128
129
130
131

vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
    type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer')