dbsampler.py 10.9 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
import copy
zhangwenwei's avatar
zhangwenwei committed
2
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
3
4
5
6
7
8
9
10
11
import os
import pickle

from mmdet3d.core.bbox import box_np_ops
from mmdet3d.datasets.pipelines import data_augment_utils
from ..registry import OBJECTSAMPLERS


class BatchSampler:
wangtai's avatar
wangtai committed
12
13
14
15
16
17
18
19
20
    """Class for sampling specific category of ground truths.

    Args:
        sample_list (list[dict]): List of samples.
        name (str | None): The category of samples. Default: None.
        epoch (int | None): Sampling epoch. Default: None.
        shuffle (bool): Whether to shuffle indices. Default: False.
        drop_reminder (bool): Drop reminder. Default: False.
    """
zhangwenwei's avatar
zhangwenwei committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

    def __init__(self,
                 sampled_list,
                 name=None,
                 epoch=None,
                 shuffle=True,
                 drop_reminder=False):
        self._sampled_list = sampled_list
        self._indices = np.arange(len(sampled_list))
        if shuffle:
            np.random.shuffle(self._indices)
        self._idx = 0
        self._example_num = len(sampled_list)
        self._name = name
        self._shuffle = shuffle
        self._epoch = epoch
        self._epoch_counter = 0
        self._drop_reminder = drop_reminder

    def _sample(self, num):
wangtai's avatar
wangtai committed
41
42
43
44
45
46
47
48
        """Sample specific number of ground truths and return indices.

        Args:
            num (int): Sampled number.

        Returns:
            list[int]: Indices of sampled ground truths.
        """
zhangwenwei's avatar
zhangwenwei committed
49
50
51
52
53
54
55
56
57
        if self._idx + num >= self._example_num:
            ret = self._indices[self._idx:].copy()
            self._reset()
        else:
            ret = self._indices[self._idx:self._idx + num]
            self._idx += num
        return ret

    def _reset(self):
wangtai's avatar
wangtai committed
58
        """Reset the index of batchsampler to zero."""
zhangwenwei's avatar
zhangwenwei committed
59
60
61
62
63
64
65
        assert self._name is not None
        # print("reset", self._name)
        if self._shuffle:
            np.random.shuffle(self._indices)
        self._idx = 0

    def sample(self, num):
wangtai's avatar
wangtai committed
66
67
68
69
70
71
72
73
        """Sample specific number of ground truths.

        Args:
            num (int): Sampled number.

        Returns:
            list[dict]: Sampled ground truths.
        """
zhangwenwei's avatar
zhangwenwei committed
74
75
76
77
        indices = self._sample(num)
        return [self._sampled_list[i] for i in indices]


78
@OBJECTSAMPLERS.register_module()
zhangwenwei's avatar
zhangwenwei committed
79
class DataBaseSampler(object):
80
81
82
83
84
85
86
87
88
89
    """Class for sampling data from the ground truth database.

    Args:
        info_path (str): Path of groundtruth database info.
        data_root (str): Path of groundtruth database.
        rate (float): Rate of actual sampled over maximum sampled number.
        prepare (dict): Name of preparation functions and the input value.
        sample_groups (dict): Sampled classes and numbers.
        classes (list[str]): List of classes. Default: None.
    """
zhangwenwei's avatar
zhangwenwei committed
90

zhangwenwei's avatar
zhangwenwei committed
91
92
93
94
95
96
97
    def __init__(self,
                 info_path,
                 data_root,
                 rate,
                 prepare,
                 sample_groups,
                 classes=None):
zhangwenwei's avatar
zhangwenwei committed
98
        super().__init__()
zhangwenwei's avatar
zhangwenwei committed
99
        self.data_root = data_root
zhangwenwei's avatar
zhangwenwei committed
100
101
102
        self.info_path = info_path
        self.rate = rate
        self.prepare = prepare
zhangwenwei's avatar
zhangwenwei committed
103
104
105
        self.classes = classes
        self.cat2label = {name: i for i, name in enumerate(classes)}
        self.label2cat = {i: name for i, name in enumerate(classes)}
zhangwenwei's avatar
zhangwenwei committed
106
107
108
109
110

        with open(info_path, 'rb') as f:
            db_infos = pickle.load(f)

        # filter database infos
zhangwenwei's avatar
zhangwenwei committed
111
        from mmdet3d.utils import get_root_logger
zhangwenwei's avatar
zhangwenwei committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
        logger = get_root_logger()
        for k, v in db_infos.items():
            logger.info(f'load {len(v)} {k} database infos')
        for prep_func, val in prepare.items():
            db_infos = getattr(self, prep_func)(db_infos, val)
        logger.info('After filter database:')
        for k, v in db_infos.items():
            logger.info(f'load {len(v)} {k} database infos')

        self.db_infos = db_infos

        # load sample groups
        # TODO: more elegant way to load sample groups
        self.sample_groups = []
        for name, num in sample_groups.items():
            self.sample_groups.append({name: int(num)})

        self.group_db_infos = self.db_infos  # just use db_infos
        self.sample_classes = []
        self.sample_max_nums = []
        for group_info in self.sample_groups:
            self.sample_classes += list(group_info.keys())
            self.sample_max_nums += list(group_info.values())

        self.sampler_dict = {}
        for k, v in self.group_db_infos.items():
            self.sampler_dict[k] = BatchSampler(v, k, shuffle=True)
        # TODO: No group_sampling currently

    @staticmethod
    def filter_by_difficulty(db_infos, removed_difficulty):
143
144
145
146
147
148
149
150
151
        """Filter ground truths by difficulties.

        Args:
            db_infos (dict): Info of groundtruth database.
            removed_difficulty (list): Difficulties that are not qualified.

        Returns:
            dict: Info of database after filtering.
        """
zhangwenwei's avatar
zhangwenwei committed
152
153
154
155
156
157
158
159
160
161
        new_db_infos = {}
        for key, dinfos in db_infos.items():
            new_db_infos[key] = [
                info for info in dinfos
                if info['difficulty'] not in removed_difficulty
            ]
        return new_db_infos

    @staticmethod
    def filter_by_min_points(db_infos, min_gt_points_dict):
162
163
164
165
166
167
168
169
170
171
        """Filter ground truths by number of points in the bbox.

        Args:
            db_infos (dict): Info of groundtruth database.
            min_gt_points_dict (dict): Different number of minimum points
                needed for different categories of ground truths.

        Returns:
            dict: Info of database after filtering.
        """
zhangwenwei's avatar
zhangwenwei committed
172
173
174
175
176
177
178
179
180
181
        for name, min_num in min_gt_points_dict.items():
            min_num = int(min_num)
            if min_num > 0:
                filtered_infos = []
                for info in db_infos[name]:
                    if info['num_points_in_gt'] >= min_num:
                        filtered_infos.append(info)
                db_infos[name] = filtered_infos
        return db_infos

zhangwenwei's avatar
zhangwenwei committed
182
    def sample_all(self, gt_bboxes, gt_labels, img=None):
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        """Sampling all categories of bboxes.

        Args:
            gt_bboxes (np.ndarray): Ground truth bounding boxes.
            gt_labels (np.ndarray): Labels of boxes.

        Returns:
            dict: Dict of sampled 'pseudo ground truths'.

                - gt_labels_3d (np.ndarray): labels of ground truths:
                    labels of sampled ground truths
                - gt_bboxes_3d (:obj:``BaseInstance3DBoxes``):
                    sampled 3D bounding boxes
                - points (np.ndarray): sampled points
                - group_ids (np.ndarray): ids of sampled ground truths
        """
zhangwenwei's avatar
zhangwenwei committed
199
200
201
202
        sampled_num_dict = {}
        sample_num_per_class = []
        for class_name, max_sample_num in zip(self.sample_classes,
                                              self.sample_max_nums):
zhangwenwei's avatar
zhangwenwei committed
203
204
205
            class_label = self.cat2label[class_name]
            # sampled_num = int(max_sample_num -
            #                   np.sum([n == class_name for n in gt_names]))
zhangwenwei's avatar
zhangwenwei committed
206
            sampled_num = int(max_sample_num -
zhangwenwei's avatar
zhangwenwei committed
207
                              np.sum([n == class_label for n in gt_labels]))
zhangwenwei's avatar
zhangwenwei committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
            sampled_num = np.round(self.rate * sampled_num).astype(np.int64)
            sampled_num_dict[class_name] = sampled_num
            sample_num_per_class.append(sampled_num)

        sampled = []
        sampled_gt_bboxes = []
        avoid_coll_boxes = gt_bboxes

        for class_name, sampled_num in zip(self.sample_classes,
                                           sample_num_per_class):
            if sampled_num > 0:
                sampled_cls = self.sample_class_v2(class_name, sampled_num,
                                                   avoid_coll_boxes)

                sampled += sampled_cls
                if len(sampled_cls) > 0:
                    if len(sampled_cls) == 1:
                        sampled_gt_box = sampled_cls[0]['box3d_lidar'][
                            np.newaxis, ...]
                    else:
                        sampled_gt_box = np.stack(
                            [s['box3d_lidar'] for s in sampled_cls], axis=0)

                    sampled_gt_bboxes += [sampled_gt_box]
                    avoid_coll_boxes = np.concatenate(
                        [avoid_coll_boxes, sampled_gt_box], axis=0)

        ret = None
        if len(sampled) > 0:
            sampled_gt_bboxes = np.concatenate(sampled_gt_bboxes, axis=0)
            # center = sampled_gt_bboxes[:, 0:3]

zhangwenwei's avatar
zhangwenwei committed
240
            # num_sampled = len(sampled)
zhangwenwei's avatar
zhangwenwei committed
241
242
243
244
            s_points_list = []
            count = 0
            for info in sampled:
                file_path = os.path.join(
zhangwenwei's avatar
zhangwenwei committed
245
246
                    self.data_root,
                    info['path']) if self.data_root else info['path']
zhangwenwei's avatar
zhangwenwei committed
247
248
249
250
251
252
253
                s_points = np.fromfile(
                    file_path, dtype=np.float32).reshape([-1, 4])
                s_points[:, :3] += info['box3d_lidar'][:3]

                count += 1

                s_points_list.append(s_points)
zhangwenwei's avatar
zhangwenwei committed
254
255
256
            # gt_names = np.array([s['name'] for s in sampled]),
            # gt_labels = np.array([self.cat2label(s) for s in gt_names])
            gt_labels = np.array([self.cat2label[s['name']] for s in sampled])
zhangwenwei's avatar
zhangwenwei committed
257
            ret = {
zhangwenwei's avatar
zhangwenwei committed
258
259
                'gt_labels_3d':
                gt_labels,
zhangwenwei's avatar
zhangwenwei committed
260
261
262
263
264
265
266
267
268
269
270
271
                'gt_bboxes_3d':
                sampled_gt_bboxes,
                'points':
                np.concatenate(s_points_list, axis=0),
                'group_ids':
                np.arange(gt_bboxes.shape[0],
                          gt_bboxes.shape[0] + len(sampled))
            }

        return ret

    def sample_class_v2(self, name, num, gt_bboxes):
272
273
274
275
276
277
278
279
280
281
        """Sampling specific categories of bounding boxes.

        Args:
            name (str): Class of objects to be sampled.
            num (int): Number of sampled bboxes.
            gt_bboxes (np.ndarray): Ground truth boxes.

        Returns:
            list[dict]: Valid samples after collision test.
        """
zhangwenwei's avatar
zhangwenwei committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
        sampled = self.sampler_dict[name].sample(num)
        sampled = copy.deepcopy(sampled)
        num_gt = gt_bboxes.shape[0]
        num_sampled = len(sampled)
        gt_bboxes_bv = box_np_ops.center_to_corner_box2d(
            gt_bboxes[:, 0:2], gt_bboxes[:, 3:5], gt_bboxes[:, 6])

        sp_boxes = np.stack([i['box3d_lidar'] for i in sampled], axis=0)
        boxes = np.concatenate([gt_bboxes, sp_boxes], axis=0).copy()

        sp_boxes_new = boxes[gt_bboxes.shape[0]:]
        sp_boxes_bv = box_np_ops.center_to_corner_box2d(
            sp_boxes_new[:, 0:2], sp_boxes_new[:, 3:5], sp_boxes_new[:, 6])

        total_bv = np.concatenate([gt_bboxes_bv, sp_boxes_bv], axis=0)
        coll_mat = data_augment_utils.box_collision_test(total_bv, total_bv)
        diag = np.arange(total_bv.shape[0])
        coll_mat[diag, diag] = False

        valid_samples = []
        for i in range(num_gt, num_gt + num_sampled):
            if coll_mat[i].any():
                coll_mat[i] = False
                coll_mat[:, i] = False
            else:
                valid_samples.append(sampled[i - num_gt])
        return valid_samples