"awq/modules/vscode:/vscode.git/clone" did not exist on "34085edc92c30be141fa10defc0e3eb43eaa9d4f"
data_augment_utils.py 16.6 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
import numba
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
3
import warnings
zww's avatar
zww committed
4
from numba.errors import NumbaPerformanceWarning
zhangwenwei's avatar
zhangwenwei committed
5
6
7

from mmdet3d.core.bbox import box_np_ops

wuyuefeng's avatar
wuyuefeng committed
8
warnings.filterwarnings('ignore', category=NumbaPerformanceWarning)
zww's avatar
zww committed
9

zhangwenwei's avatar
zhangwenwei committed
10
11
12

@numba.njit
def _rotation_box2d_jit_(corners, angle, rot_mat_T):
wangtai's avatar
wangtai committed
13
14
15
16
17
18
19
    """Rotate 2D boxes.

    Args:
        corners (np.ndarray): Corners of boxes.
        angle (float): Rotation angle.
        rot_mat_T (np.ndarray): Transposed rotation matrix.
    """
zhangwenwei's avatar
zhangwenwei committed
20
21
22
23
24
25
26
27
28
29
30
    rot_sin = np.sin(angle)
    rot_cos = np.cos(angle)
    rot_mat_T[0, 0] = rot_cos
    rot_mat_T[0, 1] = -rot_sin
    rot_mat_T[1, 0] = rot_sin
    rot_mat_T[1, 1] = rot_cos
    corners[:] = corners @ rot_mat_T


@numba.jit(nopython=True)
def box_collision_test(boxes, qboxes, clockwise=True):
wangtai's avatar
wangtai committed
31
32
33
34
35
36
37
38
    """Box collision test.

    Args:
        boxes (np.ndarray): Corners of current boxes.
        qboxes (np.ndarray): Boxes to be avoid colliding.
        clockwise (bool): Whether the corners are in clockwise order.
            Default: True.
    """
zhangwenwei's avatar
zhangwenwei committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    N = boxes.shape[0]
    K = qboxes.shape[0]
    ret = np.zeros((N, K), dtype=np.bool_)
    slices = np.array([1, 2, 3, 0])
    lines_boxes = np.stack((boxes, boxes[:, slices, :]),
                           axis=2)  # [N, 4, 2(line), 2(xy)]
    lines_qboxes = np.stack((qboxes, qboxes[:, slices, :]), axis=2)
    # vec = np.zeros((2,), dtype=boxes.dtype)
    boxes_standup = box_np_ops.corner_to_standup_nd_jit(boxes)
    qboxes_standup = box_np_ops.corner_to_standup_nd_jit(qboxes)
    for i in range(N):
        for j in range(K):
            # calculate standup first
            iw = (
                min(boxes_standup[i, 2], qboxes_standup[j, 2]) -
                max(boxes_standup[i, 0], qboxes_standup[j, 0]))
            if iw > 0:
                ih = (
                    min(boxes_standup[i, 3], qboxes_standup[j, 3]) -
                    max(boxes_standup[i, 1], qboxes_standup[j, 1]))
                if ih > 0:
                    for k in range(4):
zhangwenwei's avatar
zhangwenwei committed
61
                        for box_l in range(4):
zhangwenwei's avatar
zhangwenwei committed
62
63
                            A = lines_boxes[i, k, 0]
                            B = lines_boxes[i, k, 1]
zhangwenwei's avatar
zhangwenwei committed
64
65
                            C = lines_qboxes[j, box_l, 0]
                            D = lines_qboxes[j, box_l, 1]
zhangwenwei's avatar
zhangwenwei committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
                            acd = (D[1] - A[1]) * (C[0] -
                                                   A[0]) > (C[1] - A[1]) * (
                                                       D[0] - A[0])
                            bcd = (D[1] - B[1]) * (C[0] -
                                                   B[0]) > (C[1] - B[1]) * (
                                                       D[0] - B[0])
                            if acd != bcd:
                                abc = (C[1] - A[1]) * (B[0] - A[0]) > (
                                    B[1] - A[1]) * (
                                        C[0] - A[0])
                                abd = (D[1] - A[1]) * (B[0] - A[0]) > (
                                    B[1] - A[1]) * (
                                        D[0] - A[0])
                                if abc != abd:
                                    ret[i, j] = True  # collision.
                                    break
                        if ret[i, j] is True:
                            break
                    if ret[i, j] is False:
                        # now check complete overlap.
                        # box overlap qbox:
                        box_overlap_qbox = True
zhangwenwei's avatar
zhangwenwei committed
88
                        for box_l in range(4):  # point l in qboxes
zhangwenwei's avatar
zhangwenwei committed
89
90
91
92
93
                            for k in range(4):  # corner k in boxes
                                vec = boxes[i, k] - boxes[i, (k + 1) % 4]
                                if clockwise:
                                    vec = -vec
                                cross = vec[1] * (
zhangwenwei's avatar
zhangwenwei committed
94
                                    boxes[i, k, 0] - qboxes[j, box_l, 0])
zhangwenwei's avatar
zhangwenwei committed
95
                                cross -= vec[0] * (
zhangwenwei's avatar
zhangwenwei committed
96
                                    boxes[i, k, 1] - qboxes[j, box_l, 1])
zhangwenwei's avatar
zhangwenwei committed
97
98
99
100
101
102
103
104
                                if cross >= 0:
                                    box_overlap_qbox = False
                                    break
                            if box_overlap_qbox is False:
                                break

                        if box_overlap_qbox is False:
                            qbox_overlap_box = True
zhangwenwei's avatar
zhangwenwei committed
105
                            for box_l in range(4):  # point box_l in boxes
zhangwenwei's avatar
zhangwenwei committed
106
107
108
109
110
                                for k in range(4):  # corner k in qboxes
                                    vec = qboxes[j, k] - qboxes[j, (k + 1) % 4]
                                    if clockwise:
                                        vec = -vec
                                    cross = vec[1] * (
zhangwenwei's avatar
zhangwenwei committed
111
                                        qboxes[j, k, 0] - boxes[i, box_l, 0])
zhangwenwei's avatar
zhangwenwei committed
112
                                    cross -= vec[0] * (
zhangwenwei's avatar
zhangwenwei committed
113
                                        qboxes[j, k, 1] - boxes[i, box_l, 1])
zhangwenwei's avatar
zhangwenwei committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
                                    if cross >= 0:  #
                                        qbox_overlap_box = False
                                        break
                                if qbox_overlap_box is False:
                                    break
                            if qbox_overlap_box:
                                ret[i, j] = True  # collision.
                        else:
                            ret[i, j] = True  # collision.
    return ret


@numba.njit
def noise_per_box(boxes, valid_mask, loc_noises, rot_noises):
wangtai's avatar
wangtai committed
128
129
130
131
132
133
134
135
136
137
138
139
140
    """Add noise to every box (only on the horizontal plane).

    Args:
        boxes (np.ndarray): Input boxes with shape (N, 5).
        valid_mask (np.ndarray): Mask to indicate which boxes are valid
            with shape (N).
        loc_noises (np.ndarray): Location noises with shape (N, M, 3).
        rot_noises (np.ndarray): Rotation noises with shape (N, M).

    Returns:
        np.ndarray: Mask to indicate whether the noise is
            added successfully (pass the collision test).
    """
zhangwenwei's avatar
zhangwenwei committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    num_boxes = boxes.shape[0]
    num_tests = loc_noises.shape[1]
    box_corners = box_np_ops.box2d_to_corner_jit(boxes)
    current_corners = np.zeros((4, 2), dtype=boxes.dtype)
    rot_mat_T = np.zeros((2, 2), dtype=boxes.dtype)
    success_mask = -np.ones((num_boxes, ), dtype=np.int64)
    # print(valid_mask)
    for i in range(num_boxes):
        if valid_mask[i]:
            for j in range(num_tests):
                current_corners[:] = box_corners[i]
                current_corners -= boxes[i, :2]
                _rotation_box2d_jit_(current_corners, rot_noises[i, j],
                                     rot_mat_T)
                current_corners += boxes[i, :2] + loc_noises[i, j, :2]
                coll_mat = box_collision_test(
                    current_corners.reshape(1, 4, 2), box_corners)
                coll_mat[0, i] = False
                # print(coll_mat)
                if not coll_mat.any():
                    success_mask[i] = j
                    box_corners[i] = current_corners
                    break
    return success_mask


@numba.njit
def noise_per_box_v2_(boxes, valid_mask, loc_noises, rot_noises,
                      global_rot_noises):
wangtai's avatar
wangtai committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    """Add noise to every box (only on the horizontal plane). Version 2 used
    when enable global rotations.

    Args:
        boxes (np.ndarray): Input boxes with shape (N, 5).
        valid_mask (np.ndarray): Mask to indicate which boxes are valid
            with shape (N).
        loc_noises (np.ndarray): Location noises with shape (N, M, 3).
        rot_noises (np.ndarray): Rotation noises with shape (N, M).

    Returns:
        np.ndarray: Mask to indicate whether the noise is
            added successfully (pass the collision test).
    """
zhangwenwei's avatar
zhangwenwei committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    num_boxes = boxes.shape[0]
    num_tests = loc_noises.shape[1]
    box_corners = box_np_ops.box2d_to_corner_jit(boxes)
    current_corners = np.zeros((4, 2), dtype=boxes.dtype)
    current_box = np.zeros((1, 5), dtype=boxes.dtype)
    rot_mat_T = np.zeros((2, 2), dtype=boxes.dtype)
    dst_pos = np.zeros((2, ), dtype=boxes.dtype)
    success_mask = -np.ones((num_boxes, ), dtype=np.int64)
    corners_norm = np.zeros((4, 2), dtype=boxes.dtype)
    corners_norm[1, 1] = 1.0
    corners_norm[2] = 1.0
    corners_norm[3, 0] = 1.0
    corners_norm -= np.array([0.5, 0.5], dtype=boxes.dtype)
    corners_norm = corners_norm.reshape(4, 2)
    for i in range(num_boxes):
        if valid_mask[i]:
            for j in range(num_tests):
                current_box[0, :] = boxes[i]
                current_radius = np.sqrt(boxes[i, 0]**2 + boxes[i, 1]**2)
                current_grot = np.arctan2(boxes[i, 0], boxes[i, 1])
                dst_grot = current_grot + global_rot_noises[i, j]
                dst_pos[0] = current_radius * np.sin(dst_grot)
                dst_pos[1] = current_radius * np.cos(dst_grot)
                current_box[0, :2] = dst_pos
                current_box[0, -1] += (dst_grot - current_grot)

                rot_sin = np.sin(current_box[0, -1])
                rot_cos = np.cos(current_box[0, -1])
                rot_mat_T[0, 0] = rot_cos
                rot_mat_T[0, 1] = -rot_sin
                rot_mat_T[1, 0] = rot_sin
                rot_mat_T[1, 1] = rot_cos
                current_corners[:] = current_box[
                    0, 2:4] * corners_norm @ rot_mat_T + current_box[0, :2]
                current_corners -= current_box[0, :2]
                _rotation_box2d_jit_(current_corners, rot_noises[i, j],
                                     rot_mat_T)
                current_corners += current_box[0, :2] + loc_noises[i, j, :2]
                coll_mat = box_collision_test(
                    current_corners.reshape(1, 4, 2), box_corners)
                coll_mat[0, i] = False
                if not coll_mat.any():
                    success_mask[i] = j
                    box_corners[i] = current_corners
                    loc_noises[i, j, :2] += (dst_pos - boxes[i, :2])
                    rot_noises[i, j] += (dst_grot - current_grot)
                    break
    return success_mask


def _select_transform(transform, indices):
wangtai's avatar
wangtai committed
235
236
237
238
239
240
241
242
243
    """Select transform.

    Args:
        transform (np.ndarray): Transforms to select from.
        indices (np.ndarray): Mask to indicate which transform to select.

    Returns:
        np.ndarray: Selected transforms.
    """
zhangwenwei's avatar
zhangwenwei committed
244
245
246
247
248
249
250
251
252
253
    result = np.zeros((transform.shape[0], *transform.shape[2:]),
                      dtype=transform.dtype)
    for i in range(transform.shape[0]):
        if indices[i] != -1:
            result[i] = transform[i, indices[i]]
    return result


@numba.njit
def _rotation_matrix_3d_(rot_mat_T, angle, axis):
wangtai's avatar
wangtai committed
254
255
256
257
258
259
260
    """Get the 3D rotation matrix.

    Args:
        rot_mat_T (np.ndarray): Transposed rotation matrix.
        angle (float): Rotation angle.
        axis (int): Rotation axis.
    """
zhangwenwei's avatar
zhangwenwei committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
    rot_sin = np.sin(angle)
    rot_cos = np.cos(angle)
    rot_mat_T[:] = np.eye(3)
    if axis == 1:
        rot_mat_T[0, 0] = rot_cos
        rot_mat_T[0, 2] = -rot_sin
        rot_mat_T[2, 0] = rot_sin
        rot_mat_T[2, 2] = rot_cos
    elif axis == 2 or axis == -1:
        rot_mat_T[0, 0] = rot_cos
        rot_mat_T[0, 1] = -rot_sin
        rot_mat_T[1, 0] = rot_sin
        rot_mat_T[1, 1] = rot_cos
    elif axis == 0:
        rot_mat_T[1, 1] = rot_cos
        rot_mat_T[1, 2] = -rot_sin
        rot_mat_T[2, 1] = rot_sin
        rot_mat_T[2, 2] = rot_cos


@numba.njit
def points_transform_(points, centers, point_masks, loc_transform,
                      rot_transform, valid_mask):
wangtai's avatar
wangtai committed
284
285
286
287
288
289
290
291
292
293
294
    """Apply transforms to points and box centers.

    Args:
        points (np.ndarray): Input points.
        centers (np.ndarray): Input box centers.
        point_masks (np.ndarray): Mask to indicate which points need
            to be transformed.
        loc_transform (np.ndarray): Location transform to be applied.
        rot_transform (np.ndarray): Rotation transform to be applied.
        valid_mask (np.ndarray): Mask to indicate which boxes are valid.
    """
zhangwenwei's avatar
zhangwenwei committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    num_box = centers.shape[0]
    num_points = points.shape[0]
    rot_mat_T = np.zeros((num_box, 3, 3), dtype=points.dtype)
    for i in range(num_box):
        _rotation_matrix_3d_(rot_mat_T[i], rot_transform[i], 2)
    for i in range(num_points):
        for j in range(num_box):
            if valid_mask[j]:
                if point_masks[i, j] == 1:
                    points[i, :3] -= centers[j, :3]
                    points[i:i + 1, :3] = points[i:i + 1, :3] @ rot_mat_T[j]
                    points[i, :3] += centers[j, :3]
                    points[i, :3] += loc_transform[j]
                    break  # only apply first box's transform


@numba.njit
def box3d_transform_(boxes, loc_transform, rot_transform, valid_mask):
wangtai's avatar
wangtai committed
313
314
315
316
317
318
319
320
    """Transform 3D boxes.

    Args:
        boxes (np.ndarray): 3D boxes to be transformed.
        loc_transform (np.ndarray): Location transform to be applied.
        rot_transform (np.ndarray): Rotation transform to be applied.
        valid_mask (np.ndarray | None): Mask to indicate which boxes are valid.
    """
zhangwenwei's avatar
zhangwenwei committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
    num_box = boxes.shape[0]
    for i in range(num_box):
        if valid_mask[i]:
            boxes[i, :3] += loc_transform[i]
            boxes[i, 6] += rot_transform[i]


def noise_per_object_v3_(gt_boxes,
                         points=None,
                         valid_mask=None,
                         rotation_perturb=np.pi / 4,
                         center_noise_std=1.0,
                         global_random_rot_range=np.pi / 4,
                         num_try=100):
wangtai's avatar
wangtai committed
335
    """Random rotate or remove each groundtruth independently. use kitti viewer
zhangwenwei's avatar
zhangwenwei committed
336
    to test this function points_transform_
zhangwenwei's avatar
zhangwenwei committed
337
338

    Args:
wangtai's avatar
wangtai committed
339
340
341
342
343
344
345
346
347
348
349
        gt_boxes (np.ndarray): Ground truth boxes with shape (N, 7).
        points (np.ndarray | None): Input point cloud with shape (M, 4).
            Default: None.
        valid_mask (np.ndarray | None): Mask to indicate which boxes are valid.
            Default: None.
        rotation_perturb (float): Rotation perturbation. Default: pi / 4.
        center_noise_std (float): Center noise standard deviation.
            Default: 1.0.
        global_random_rot_range (float): Global random rotation range.
            Default: pi/4.
        num_try (int): Number of try. Default: 100.
zhangwenwei's avatar
zhangwenwei committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
    """
    num_boxes = gt_boxes.shape[0]
    if not isinstance(rotation_perturb, (list, tuple, np.ndarray)):
        rotation_perturb = [-rotation_perturb, rotation_perturb]
    if not isinstance(global_random_rot_range, (list, tuple, np.ndarray)):
        global_random_rot_range = [
            -global_random_rot_range, global_random_rot_range
        ]
    enable_grot = np.abs(global_random_rot_range[0] -
                         global_random_rot_range[1]) >= 1e-3

    if not isinstance(center_noise_std, (list, tuple, np.ndarray)):
        center_noise_std = [
            center_noise_std, center_noise_std, center_noise_std
        ]
    if valid_mask is None:
        valid_mask = np.ones((num_boxes, ), dtype=np.bool_)
    center_noise_std = np.array(center_noise_std, dtype=gt_boxes.dtype)

    loc_noises = np.random.normal(
        scale=center_noise_std, size=[num_boxes, num_try, 3])
    rot_noises = np.random.uniform(
        rotation_perturb[0], rotation_perturb[1], size=[num_boxes, num_try])
    gt_grots = np.arctan2(gt_boxes[:, 0], gt_boxes[:, 1])
    grot_lowers = global_random_rot_range[0] - gt_grots
    grot_uppers = global_random_rot_range[1] - gt_grots
    global_rot_noises = np.random.uniform(
        grot_lowers[..., np.newaxis],
        grot_uppers[..., np.newaxis],
        size=[num_boxes, num_try])

wuyuefeng's avatar
wuyuefeng committed
381
    origin = (0.5, 0.5, 0)
zhangwenwei's avatar
zhangwenwei committed
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    gt_box_corners = box_np_ops.center_to_corner_box3d(
        gt_boxes[:, :3],
        gt_boxes[:, 3:6],
        gt_boxes[:, 6],
        origin=origin,
        axis=2)

    # TODO: rewrite this noise box function?
    if not enable_grot:
        selected_noise = noise_per_box(gt_boxes[:, [0, 1, 3, 4, 6]],
                                       valid_mask, loc_noises, rot_noises)
    else:
        selected_noise = noise_per_box_v2_(gt_boxes[:, [0, 1, 3, 4, 6]],
                                           valid_mask, loc_noises, rot_noises,
                                           global_rot_noises)

    loc_transforms = _select_transform(loc_noises, selected_noise)
    rot_transforms = _select_transform(rot_noises, selected_noise)
    surfaces = box_np_ops.corner_to_surfaces_3d_jit(gt_box_corners)
    if points is not None:
        # TODO: replace this points_in_convex function by my tools?
        point_masks = box_np_ops.points_in_convex_polygon_3d_jit(
            points[:, :3], surfaces)
        points_transform_(points, gt_boxes[:, :3], point_masks, loc_transforms,
                          rot_transforms, valid_mask)

    box3d_transform_(gt_boxes, loc_transforms, rot_transforms, valid_mask)