kitti_converter.py 7.75 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import pickle
from pathlib import Path

import numpy as np
from mmcv import track_iter_progress

from mmdet3d.core.bbox import box_np_ops
from .kitti_data_utils import get_kitti_image_info


def convert_to_kitti_info_version2(info):
    """convert kitti info v1 to v2 if possible.
    """
    if 'image' not in info or 'calib' not in info or 'point_cloud' not in info:
        info['image'] = {
            'image_shape': info['img_shape'],
            'image_idx': info['image_idx'],
            'image_path': info['img_path'],
        }
        info['calib'] = {
            'R0_rect': info['calib/R0_rect'],
            'Tr_velo_to_cam': info['calib/Tr_velo_to_cam'],
            'P2': info['calib/P2'],
        }
        info['point_cloud'] = {
            'velodyne_path': info['velodyne_path'],
        }


def _read_imageset_file(path):
    with open(path, 'r') as f:
        lines = f.readlines()
    return [int(line) for line in lines]


def _calculate_num_points_in_gt(data_path,
                                infos,
                                relative_path,
                                remove_outside=True,
                                num_features=4):
    for info in track_iter_progress(infos):
        pc_info = info['point_cloud']
        image_info = info['image']
        calib = info['calib']
        if relative_path:
            v_path = str(Path(data_path) / pc_info['velodyne_path'])
        else:
            v_path = pc_info['velodyne_path']
        points_v = np.fromfile(
            v_path, dtype=np.float32, count=-1).reshape([-1, num_features])
        rect = calib['R0_rect']
        Trv2c = calib['Tr_velo_to_cam']
        P2 = calib['P2']
        if remove_outside:
            points_v = box_np_ops.remove_outside_points(
                points_v, rect, Trv2c, P2, image_info['image_shape'])

        # points_v = points_v[points_v[:, 0] > 0]
        annos = info['annos']
        num_obj = len([n for n in annos['name'] if n != 'DontCare'])
        # annos = kitti.filter_kitti_anno(annos, ['DontCare'])
        dims = annos['dimensions'][:num_obj]
        loc = annos['location'][:num_obj]
        rots = annos['rotation_y'][:num_obj]
        gt_boxes_camera = np.concatenate([loc, dims, rots[..., np.newaxis]],
                                         axis=1)
        gt_boxes_lidar = box_np_ops.box_camera_to_lidar(
            gt_boxes_camera, rect, Trv2c)
        indices = box_np_ops.points_in_rbbox(points_v[:, :3], gt_boxes_lidar)
        num_points_in_gt = indices.sum(0)
        num_ignored = len(annos['dimensions']) - num_obj
        num_points_in_gt = np.concatenate(
            [num_points_in_gt, -np.ones([num_ignored])])
        annos['num_points_in_gt'] = num_points_in_gt.astype(np.int32)


def create_kitti_info_file(data_path,
                           pkl_prefix='kitti_',
                           save_path=None,
                           relative_path=True):
    imageset_folder = Path(data_path) / 'ImageSets'
    train_img_ids = _read_imageset_file(
        str(imageset_folder / 'train_6014.txt'))
    val_img_ids = _read_imageset_file(str(imageset_folder / 'val_1467.txt'))
    test_img_ids = _read_imageset_file(str(imageset_folder / 'test.txt'))

    print('Generate info. this may take several minutes.')
    if save_path is None:
        save_path = Path(data_path)
    else:
        save_path = Path(save_path)
    kitti_infos_train = get_kitti_image_info(
        data_path,
        training=True,
        velodyne=True,
        calib=True,
        image_ids=train_img_ids,
        relative_path=relative_path)
    _calculate_num_points_in_gt(data_path, kitti_infos_train, relative_path)
    filename = save_path / f'{pkl_prefix}_infos_train.pkl'
    print(f'Kitti info train file is saved to {filename}')
    with open(filename, 'wb') as f:
        pickle.dump(kitti_infos_train, f)
    kitti_infos_val = get_kitti_image_info(
        data_path,
        training=True,
        velodyne=True,
        calib=True,
        image_ids=val_img_ids,
        relative_path=relative_path)
    _calculate_num_points_in_gt(data_path, kitti_infos_val, relative_path)
    filename = save_path / f'{pkl_prefix}_infos_val.pkl'
    print(f'Kitti info val file is saved to {filename}')
    with open(filename, 'wb') as f:
        pickle.dump(kitti_infos_val, f)
    filename = save_path / f'{pkl_prefix}_infos_trainval.pkl'
    print(f'Kitti info trainval file is saved to {filename}')
    with open(filename, 'wb') as f:
        pickle.dump(kitti_infos_train + kitti_infos_val, f)

    kitti_infos_test = get_kitti_image_info(
        data_path,
        training=False,
        label_info=False,
        velodyne=True,
        calib=True,
        image_ids=test_img_ids,
        relative_path=relative_path)
    filename = save_path / f'{pkl_prefix}_infos_test.pkl'
    print(f'Kitti info test file is saved to {filename}')
    with open(filename, 'wb') as f:
        pickle.dump(kitti_infos_test, f)


def _create_reduced_point_cloud(data_path,
                                info_path,
                                save_path=None,
                                back=False):
    with open(info_path, 'rb') as f:
        kitti_infos = pickle.load(f)

    for info in track_iter_progress(kitti_infos):
        pc_info = info['point_cloud']
        image_info = info['image']
        calib = info['calib']

        v_path = pc_info['velodyne_path']
        v_path = Path(data_path) / v_path
        points_v = np.fromfile(
            str(v_path), dtype=np.float32, count=-1).reshape([-1, 4])
        rect = calib['R0_rect']
        P2 = calib['P2']
        Trv2c = calib['Tr_velo_to_cam']
        # first remove z < 0 points
        # keep = points_v[:, -1] > 0
        # points_v = points_v[keep]
        # then remove outside.
        if back:
            points_v[:, 0] = -points_v[:, 0]
        points_v = box_np_ops.remove_outside_points(points_v, rect, Trv2c, P2,
                                                    image_info['image_shape'])
        if save_path is None:
            save_dir = v_path.parent.parent / (v_path.parent.stem + '_reduced')
            if not save_dir.exists():
                save_dir.mkdir()
            save_filename = save_dir / v_path.name
            # save_filename = str(v_path) + '_reduced'
            if back:
                save_filename += '_back'
        else:
            save_filename = str(Path(save_path) / v_path.name)
            if back:
                save_filename += '_back'
        with open(save_filename, 'w') as f:
            points_v.tofile(f)


def create_reduced_point_cloud(data_path,
                               pkl_prefix,
                               train_info_path=None,
                               val_info_path=None,
                               test_info_path=None,
                               save_path=None,
                               with_back=False):
    if train_info_path is None:
        train_info_path = Path(data_path) / f'{pkl_prefix}_infos_train.pkl'
    if val_info_path is None:
        val_info_path = Path(data_path) / f'{pkl_prefix}_infos_val.pkl'
    if test_info_path is None:
        test_info_path = Path(data_path) / f'{pkl_prefix}_infos_test.pkl'

    print('create reduced point cloud for training set')
    _create_reduced_point_cloud(data_path, train_info_path, save_path)
    print('create reduced point cloud for validatin set')
    _create_reduced_point_cloud(data_path, val_info_path, save_path)
    print('create reduced point cloud for testing set')
    _create_reduced_point_cloud(data_path, test_info_path, save_path)
    if with_back:
        _create_reduced_point_cloud(
            data_path, train_info_path, save_path, back=True)
        _create_reduced_point_cloud(
            data_path, val_info_path, save_path, back=True)
        _create_reduced_point_cloud(
            data_path, test_info_path, save_path, back=True)