test_config.py 11.1 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
from os.path import dirname, exists, join, relpath

from mmdet.core import BitmapMasks, PolygonMasks


def _get_config_directory():
    """ Find the predefined detector config directory """
    try:
        # Assume we are running in the source mmdetection repo
        repo_dpath = dirname(dirname(__file__))
    except NameError:
        # For IPython development when this __file__ is not defined
        import mmdet
        repo_dpath = dirname(dirname(mmdet.__file__))
    config_dpath = join(repo_dpath, 'configs')
    if not exists(config_dpath):
        raise Exception('Cannot find config path')
    return config_dpath


def test_config_build_detector():
    """
    Test that all detection models defined in the configs can be initialized.
    """
    from mmcv import Config
    from mmdet3d.models import build_detector

    config_dpath = _get_config_directory()
    print('Found config_dpath = {!r}'.format(config_dpath))

    import glob
    config_fpaths = list(glob.glob(join(config_dpath, '**', '*.py')))
    config_fpaths = [p for p in config_fpaths if p.find('_base_') == -1]
    config_names = [relpath(p, config_dpath) for p in config_fpaths]

    print('Using {} config files'.format(len(config_names)))

    for config_fname in config_names:
        config_fpath = join(config_dpath, config_fname)
        config_mod = Config.fromfile(config_fpath)

        config_mod.model
        config_mod.train_cfg
        config_mod.test_cfg
        print('Building detector, config_fpath = {!r}'.format(config_fpath))

        # Remove pretrained keys to allow for testing in an offline environment
        if 'pretrained' in config_mod.model:
            config_mod.model['pretrained'] = None

        detector = build_detector(
            config_mod.model,
            train_cfg=config_mod.train_cfg,
            test_cfg=config_mod.test_cfg)
        assert detector is not None

        if 'roi_head' in config_mod.model.keys():
            # for two stage detector
            # detectors must have bbox head
            assert detector.roi_head.with_bbox and detector.with_bbox
            assert detector.roi_head.with_mask == detector.with_mask

            head_config = config_mod.model['roi_head']
            _check_roi_head(head_config, detector.roi_head)
        # else:
        #     # for single stage detector
        #     # detectors must have bbox head
        #     # assert detector.with_bbox
        #     head_config = config_mod.model['bbox_head']
        #     _check_bbox_head(head_config, detector.bbox_head)


def test_config_data_pipeline():
    """
    Test whether the data pipeline is valid and can process corner cases.
    CommandLine:
        xdoctest -m tests/test_config.py test_config_build_data_pipeline
    """
    from mmcv import Config
    from mmdet.datasets.pipelines import Compose
    import numpy as np

    config_dpath = _get_config_directory()
    print('Found config_dpath = {!r}'.format(config_dpath))

    # Only tests a representative subset of configurations
    # TODO: test pipelines using Albu, current Albu throw None given empty GT
    config_names = [
        'nus/faster_rcnn_r50_fpn_caffe_2x8_1x_nus.py',
        'nus/retinanet_r50_fpn_caffe_2x8_1x_nus.py',
        'kitti/'
        'faster_rcnn_r50_fpn_caffe_1x_kitti-2d-3class_coco-3x-pretrain.py',
    ]

    def dummy_masks(h, w, num_obj=3, mode='bitmap'):
        assert mode in ('polygon', 'bitmap')
        if mode == 'bitmap':
            masks = np.random.randint(0, 2, (num_obj, h, w), dtype=np.uint8)
            masks = BitmapMasks(masks, h, w)
        else:
            masks = []
            for i in range(num_obj):
                masks.append([])
                masks[-1].append(
                    np.random.uniform(0, min(h - 1, w - 1), (8 + 4 * i, )))
                masks[-1].append(
                    np.random.uniform(0, min(h - 1, w - 1), (10 + 4 * i, )))
            masks = PolygonMasks(masks, h, w)
        return masks

    print('Using {} config files'.format(len(config_names)))

    for config_fname in config_names:
        config_fpath = join(config_dpath, config_fname)
        config_mod = Config.fromfile(config_fpath)

        # remove loading pipeline
        loading_pipeline = config_mod.train_pipeline.pop(0)
        loading_ann_pipeline = config_mod.train_pipeline.pop(0)
        config_mod.test_pipeline.pop(0)

        train_pipeline = Compose(config_mod.train_pipeline)
        test_pipeline = Compose(config_mod.test_pipeline)

        print(
            'Building data pipeline, config_fpath = {!r}'.format(config_fpath))

        print('Test training data pipeline: \n{!r}'.format(train_pipeline))
        img = np.random.randint(0, 255, size=(888, 666, 3), dtype=np.uint8)
        if loading_pipeline.get('to_float32', False):
            img = img.astype(np.float32)
        mode = 'bitmap' if loading_ann_pipeline.get('poly2mask',
                                                    True) else 'polygon'
        results = dict(
            filename='test_img.png',
            img=img,
            img_shape=img.shape,
            ori_shape=img.shape,
            gt_bboxes=np.array([[35.2, 11.7, 39.7, 15.7]], dtype=np.float32),
            gt_labels=np.array([1], dtype=np.int64),
            gt_masks=dummy_masks(img.shape[0], img.shape[1], mode=mode),
        )
        results['bbox_fields'] = ['gt_bboxes']
        results['mask_fields'] = ['gt_masks']
        output_results = train_pipeline(results)
        assert output_results is not None

        print('Test testing data pipeline: \n{!r}'.format(test_pipeline))
        results = dict(
            filename='test_img.png',
            img=img,
            img_shape=img.shape,
            ori_shape=img.shape,
            gt_bboxes=np.array([[35.2, 11.7, 39.7, 15.7]], dtype=np.float32),
            gt_labels=np.array([1], dtype=np.int64),
            gt_masks=dummy_masks(img.shape[0], img.shape[1], mode=mode),
        )
        results['bbox_fields'] = ['gt_bboxes']
        results['mask_fields'] = ['gt_masks']
        output_results = test_pipeline(results)
        assert output_results is not None

        # test empty GT
        print('Test empty GT with training data pipeline: \n{!r}'.format(
            train_pipeline))
        results = dict(
            filename='test_img.png',
            img=img,
            img_shape=img.shape,
            ori_shape=img.shape,
            gt_bboxes=np.zeros((0, 4), dtype=np.float32),
            gt_labels=np.array([], dtype=np.int64),
            gt_masks=dummy_masks(
                img.shape[0], img.shape[1], num_obj=0, mode=mode),
        )
        results['bbox_fields'] = ['gt_bboxes']
        results['mask_fields'] = ['gt_masks']
        output_results = train_pipeline(results)
        assert output_results is not None

        print('Test empty GT with testing data pipeline: \n{!r}'.format(
            test_pipeline))
        results = dict(
            filename='test_img.png',
            img=img,
            img_shape=img.shape,
            ori_shape=img.shape,
            gt_bboxes=np.zeros((0, 4), dtype=np.float32),
            gt_labels=np.array([], dtype=np.int64),
            gt_masks=dummy_masks(
                img.shape[0], img.shape[1], num_obj=0, mode=mode),
        )
        results['bbox_fields'] = ['gt_bboxes']
        results['mask_fields'] = ['gt_masks']
        output_results = test_pipeline(results)
        assert output_results is not None


def _check_roi_head(config, head):
    # check consistency between head_config and roi_head
    assert config['type'] == head.__class__.__name__

    # check roi_align
    bbox_roi_cfg = config.bbox_roi_extractor
    bbox_roi_extractor = head.bbox_roi_extractor
    _check_roi_extractor(bbox_roi_cfg, bbox_roi_extractor)

    # check bbox head infos
    bbox_cfg = config.bbox_head
    bbox_head = head.bbox_head
    _check_bbox_head(bbox_cfg, bbox_head)

    if head.with_mask:
        # check roi_align
        if config.mask_roi_extractor:
            mask_roi_cfg = config.mask_roi_extractor
            mask_roi_extractor = head.mask_roi_extractor
            _check_roi_extractor(mask_roi_cfg, mask_roi_extractor,
                                 bbox_roi_extractor)

        # check mask head infos
        mask_head = head.mask_head
        mask_cfg = config.mask_head
        _check_mask_head(mask_cfg, mask_head)


def _check_roi_extractor(config, roi_extractor, prev_roi_extractor=None):
    import torch.nn as nn
    if isinstance(roi_extractor, nn.ModuleList):
        if prev_roi_extractor:
            prev_roi_extractor = prev_roi_extractor[0]
        roi_extractor = roi_extractor[0]

    assert (len(config.featmap_strides) == len(roi_extractor.roi_layers))
    assert (config.out_channels == roi_extractor.out_channels)
    from torch.nn.modules.utils import _pair
    assert (_pair(
        config.roi_layer.out_size) == roi_extractor.roi_layers[0].out_size)

    if 'use_torchvision' in config.roi_layer:
        assert (config.roi_layer.use_torchvision ==
                roi_extractor.roi_layers[0].use_torchvision)
    elif 'aligned' in config.roi_layer:
        assert (
            config.roi_layer.aligned == roi_extractor.roi_layers[0].aligned)

    if prev_roi_extractor:
        assert (roi_extractor.roi_layers[0].aligned ==
                prev_roi_extractor.roi_layers[0].aligned)
        assert (roi_extractor.roi_layers[0].use_torchvision ==
                prev_roi_extractor.roi_layers[0].use_torchvision)


def _check_mask_head(mask_cfg, mask_head):
    import torch.nn as nn
    if isinstance(mask_cfg, list):
        for single_mask_cfg, single_mask_head in zip(mask_cfg, mask_head):
            _check_mask_head(single_mask_cfg, single_mask_head)
    elif isinstance(mask_head, nn.ModuleList):
        for single_mask_head in mask_head:
            _check_mask_head(mask_cfg, single_mask_head)
    else:
        assert mask_cfg['type'] == mask_head.__class__.__name__
        assert mask_cfg.in_channels == mask_head.in_channels
        assert (
            mask_cfg.conv_out_channels == mask_head.conv_logits.in_channels)
        class_agnostic = mask_cfg.get('class_agnostic', False)
        out_dim = (1 if class_agnostic else mask_cfg.num_classes)
        assert mask_head.conv_logits.out_channels == out_dim


def _check_bbox_head(bbox_cfg, bbox_head):
    import torch.nn as nn
    if isinstance(bbox_cfg, list):
        for single_bbox_cfg, single_bbox_head in zip(bbox_cfg, bbox_head):
            _check_bbox_head(single_bbox_cfg, single_bbox_head)
    elif isinstance(bbox_head, nn.ModuleList):
        for single_bbox_head in bbox_head:
            _check_bbox_head(bbox_cfg, single_bbox_head)
    else:
        assert bbox_cfg['type'] == bbox_head.__class__.__name__
        assert bbox_cfg.in_channels == bbox_head.in_channels
        with_cls = bbox_cfg.get('with_cls', True)
        if with_cls:
            fc_out_channels = bbox_cfg.get('fc_out_channels', 2048)
            assert (fc_out_channels == bbox_head.fc_cls.in_features)
            assert bbox_cfg.num_classes + 1 == bbox_head.fc_cls.out_features

        with_reg = bbox_cfg.get('with_reg', True)
        if with_reg:
            out_dim = (4 if bbox_cfg.reg_class_agnostic else 4 *
                       bbox_cfg.num_classes)
            assert bbox_head.fc_reg.out_features == out_dim