voxelization_cpu.cpp 6 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
#include <torch/extension.h>
#include <ATen/TensorUtils.h>
// #include "voxelization.h"


namespace {

template <typename T, typename T_int>
void dynamic_voxelize_kernel(const torch::TensorAccessor<T,2> points,
                             torch::TensorAccessor<T_int, 2> coors,
                             const std::vector<float> voxel_size,
                             const std::vector<float> coors_range,
                             const std::vector<int> grid_size,
                             const int num_points,
                             const int num_features,
                             const int NDim
                             ) {

  const int ndim_minus_1 = NDim - 1;
  bool failed = false;
  int coor[NDim];
  int c;

  for (int i = 0; i < num_points; ++i) {
    failed = false;
    for (int j = 0; j < NDim; ++j) {
      c = floor((points[i][j] - coors_range[j]) / voxel_size[j]);
      // necessary to rm points out of range
      if ((c < 0 || c >= grid_size[j])) {
        failed = true;
        break;
      }
      coor[ndim_minus_1 - j] = c;
    }

    for (int k = 0; k < NDim; ++k) {
      if (failed)
        coors[i][k] = -1;
      else
        coors[i][k] = coor[k];
    }
  }

  return;
}


template <typename T, typename T_int>
void hard_voxelize_kernel(const torch::TensorAccessor<T,2> points,
                          torch::TensorAccessor<T,3> voxels,
                          torch::TensorAccessor<T_int,2> coors,
                          torch::TensorAccessor<T_int,1> num_points_per_voxel,
                          torch::TensorAccessor<T_int,3> coor_to_voxelidx,
                          int& voxel_num,
                          const std::vector<float> voxel_size,
                          const std::vector<float> coors_range,
                          const std::vector<int> grid_size,
                          const int max_points,
                          const int max_voxels,
                          const int num_points,
                          const int num_features,
                          const int NDim
                          ) {

  // declare a temp coors
  at::Tensor temp_coors = at::zeros({num_points, NDim}, at::TensorOptions().dtype(at::kInt).device(at::kCPU));

  // First use dynamic voxelization to get coors,
  // then check max points/voxels constraints
  dynamic_voxelize_kernel<T, int>(
          points,
          temp_coors.accessor<int,2>(),
          voxel_size,
          coors_range,
          grid_size,
          num_points,
          num_features,
          NDim
  );

  int voxelidx, num;
  auto coor = temp_coors.accessor<int,2>();

  for (int i = 0; i < num_points; ++i) {
    // T_int* coor = temp_coors.data_ptr<int>() + i * NDim;

    if (coor[i][0] == -1)
      continue;

    voxelidx = coor_to_voxelidx[coor[i][0]][coor[i][1]][coor[i][2]];

    // record voxel
    if (voxelidx == -1) {
      voxelidx = voxel_num;
      if (max_voxels != -1 && voxel_num >= max_voxels)
        break;
      voxel_num += 1;

      coor_to_voxelidx[coor[i][0]][coor[i][1]][coor[i][2]] = voxelidx;

      for (int k = 0; k < NDim; ++k) {
        coors[voxelidx][k] = coor[i][k];
      }
    }

    // put points into voxel
    num = num_points_per_voxel[voxelidx];
    if (max_points == -1 || num < max_points) {
      for (int k = 0; k < num_features; ++k) {
        voxels[voxelidx][num][k] = points[i][k];
      }
      num_points_per_voxel[voxelidx] += 1;
    }
  }

  return;
}

} // namespace


namespace voxelization {

int hard_voxelize_cpu(
    const at::Tensor& points,
    at::Tensor& voxels,
    at::Tensor& coors,
    at::Tensor& num_points_per_voxel,
    const std::vector<float> voxel_size,
    const std::vector<float> coors_range,
    const int max_points,
    const int max_voxels,
    const int NDim=3) {
    // current version tooks about 0.02s_0.03s for one frame on cpu
    // check device
    AT_ASSERTM(points.device().is_cpu(), "points must be a CPU tensor");

    std::vector<int> grid_size(NDim);
    const int num_points = points.size(0);
    const int num_features = points.size(1);

    for (int i = 0; i < NDim; ++i) {
        grid_size[i] = round((coors_range[NDim + i] - coors_range[i]) / voxel_size[i]);
    }

    // coors, num_points_per_voxel, coor_to_voxelidx are int Tensor
    //printf("cpu coor_to_voxelidx size: [%d, %d, %d]\n", grid_size[2], grid_size[1], grid_size[0]);
    at::Tensor coor_to_voxelidx = -at::ones({grid_size[2], grid_size[1], grid_size[0]}, coors.options());

    int voxel_num = 0;
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(points.type(), "hard_voxelize_forward", [&] {
        hard_voxelize_kernel<scalar_t, int>(
            points.accessor<scalar_t,2>(),
            voxels.accessor<scalar_t,3>(),
            coors.accessor<int,2>(),
            num_points_per_voxel.accessor<int,1>(),
            coor_to_voxelidx.accessor<int,3>(),
            voxel_num,
            voxel_size,
            coors_range,
            grid_size,
            max_points,
            max_voxels,
            num_points,
            num_features,
            NDim
        );
    });

    return voxel_num;
}


void dynamic_voxelize_cpu(
    const at::Tensor& points,
    at::Tensor& coors,
    const std::vector<float> voxel_size,
    const std::vector<float> coors_range,
    const int NDim=3) {
    // check device
    AT_ASSERTM(points.device().is_cpu(), "points must be a CPU tensor");

    std::vector<int> grid_size(NDim);
    const int num_points = points.size(0);
    const int num_features = points.size(1);

    for (int i = 0; i < NDim; ++i) {
        grid_size[i] = round((coors_range[NDim + i] - coors_range[i]) / voxel_size[i]);
    }

    // coors, num_points_per_voxel, coor_to_voxelidx are int Tensor
    AT_DISPATCH_FLOATING_TYPES_AND_HALF(points.type(), "hard_voxelize_forward", [&] {
        dynamic_voxelize_kernel<scalar_t, int>(
            points.accessor<scalar_t,2>(),
            coors.accessor<int,2>(),
            voxel_size,
            coors_range,
            grid_size,
            num_points,
            num_features,
            NDim
        );
    });

    return;
}

}