pillar_encoder.py 14.6 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import torch
from torch import nn

from mmdet3d.ops import DynamicScatter, build_norm_layer
from ..registry import VOXEL_ENCODERS
from .utils import PFNLayer, get_paddings_indicator


@VOXEL_ENCODERS.register_module
class PillarFeatureNet(nn.Module):

    def __init__(self,
                 num_input_features=4,
                 use_norm=True,
                 num_filters=(64, ),
                 with_distance=False,
                 with_cluster_center=True,
                 with_voxel_center=True,
                 voxel_size=(0.2, 0.2, 4),
                 point_cloud_range=(0, -40, -3, 70.4, 40, 1),
                 mode='max'):
        """ Pillar Feature Net.
        The network prepares the pillar features and performs forward pass
        through PFNLayers.

        Args:
            num_input_features (int). Number of input features,
                either x, y, z or x, y, z, r.
            use_norm (bool). Whether to include BatchNorm.
            num_filters (list[int]). Number of features in each of the
                N PFNLayers.
            with_distance (bool). Whether to include Euclidean distance
                to points.
            voxel_size (list[float]). Size of voxels, only utilize x and y
                size.
            point_cloud_range (list[float>]). Point cloud range, only
                utilize x and y min.
        """

        super(PillarFeatureNet, self).__init__()
        assert len(num_filters) > 0
        if with_cluster_center:
            num_input_features += 3
        if with_voxel_center:
            num_input_features += 2
        if with_distance:
            num_input_features += 1
        self._with_distance = with_distance
        self._with_cluster_center = with_cluster_center
        self._with_voxel_center = with_voxel_center

        # Create PillarFeatureNet layers
        self.num_input_features = num_input_features
        num_filters = [num_input_features] + list(num_filters)
        pfn_layers = []
        for i in range(len(num_filters) - 1):
            in_filters = num_filters[i]
            out_filters = num_filters[i + 1]
            if i < len(num_filters) - 2:
                last_layer = False
            else:
                last_layer = True
            pfn_layers.append(
                PFNLayer(
                    in_filters,
                    out_filters,
                    use_norm,
                    last_layer=last_layer,
                    mode=mode))
        self.pfn_layers = nn.ModuleList(pfn_layers)

        # Need pillar (voxel) size and x/y offset in order to calculate offset
        self.vx = voxel_size[0]
        self.vy = voxel_size[1]
        self.x_offset = self.vx / 2 + point_cloud_range[0]
        self.y_offset = self.vy / 2 + point_cloud_range[1]
        self.point_cloud_range = point_cloud_range

    def forward(self, features, num_points, coors):
        features_ls = [features]
        # Find distance of x, y, and z from cluster center
        if self._with_cluster_center:
            points_mean = features[:, :, :3].sum(
                dim=1, keepdim=True) / num_points.type_as(features).view(
                    -1, 1, 1)
            f_cluster = features[:, :, :3] - points_mean
            features_ls.append(f_cluster)

        # Find distance of x, y, and z from pillar center
        if self._with_voxel_center:
            f_center = features[:, :, :2]
            f_center[:, :, 0] = f_center[:, :, 0] - (
                coors[:, 3].type_as(features).unsqueeze(1) * self.vx +
                self.x_offset)
            f_center[:, :, 1] = f_center[:, :, 1] - (
                coors[:, 2].type_as(features).unsqueeze(1) * self.vy +
                self.y_offset)
            features_ls.append(f_center)

        if self._with_distance:
            points_dist = torch.norm(features[:, :, :3], 2, 2, keepdim=True)
            features_ls.append(points_dist)

        # Combine together feature decorations
        features = torch.cat(features_ls, dim=-1)
        # The feature decorations were calculated without regard to whether
        # pillar was empty. Need to ensure that
        # empty pillars remain set to zeros.
        voxel_count = features.shape[1]
        mask = get_paddings_indicator(num_points, voxel_count, axis=0)
        mask = torch.unsqueeze(mask, -1).type_as(features)
        features *= mask

        for pfn in self.pfn_layers:
            features = pfn(features, num_points)

        return features.squeeze()


@VOXEL_ENCODERS.register_module
class DynamicPillarFeatureNet(PillarFeatureNet):

    def __init__(self,
                 num_input_features=4,
                 use_norm=True,
                 num_filters=(64, ),
                 with_distance=False,
                 with_cluster_center=True,
                 with_voxel_center=True,
                 voxel_size=(0.2, 0.2, 4),
                 point_cloud_range=(0, -40, -3, 70.4, 40, 1),
                 norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01),
                 mode='max'):
        """
        Dynamic Pillar Feature Net for Dynamic Voxelization.
        The difference is in the forward part
        """

        super(DynamicPillarFeatureNet, self).__init__(
            num_input_features,
            use_norm,
            num_filters,
            with_distance,
            with_cluster_center=with_cluster_center,
            with_voxel_center=with_voxel_center,
            voxel_size=voxel_size,
            point_cloud_range=point_cloud_range,
            mode=mode)

        num_filters = [self.num_input_features] + list(num_filters)
        pfn_layers = []
        # TODO: currently only support one PFNLayer

        for i in range(len(num_filters) - 1):
            in_filters = num_filters[i]
            out_filters = num_filters[i + 1]
            if i > 0:
                in_filters *= 2
            norm_name, norm_layer = build_norm_layer(norm_cfg, out_filters)
            pfn_layers.append(
                nn.Sequential(
                    nn.Linear(in_filters, out_filters, bias=False), norm_layer,
                    nn.ReLU(inplace=True)))
        self.num_pfn = len(pfn_layers)
        self.pfn_layers = nn.ModuleList(pfn_layers)
        self.pfn_scatter = DynamicScatter(voxel_size, point_cloud_range,
                                          (mode != 'max'))
        self.cluster_scatter = DynamicScatter(
            voxel_size, point_cloud_range, average_points=True)

    def map_voxel_center_to_point(self, pts_coors, voxel_mean, voxel_coors):
        # Step 1: scatter voxel into canvas
        # Calculate necessary things for canvas creation
        canvas_y = int(
            (self.point_cloud_range[4] - self.point_cloud_range[1]) / self.vy)
        canvas_x = int(
            (self.point_cloud_range[3] - self.point_cloud_range[0]) / self.vx)
        canvas_channel = voxel_mean.size(1)
        batch_size = pts_coors[-1, 0] + 1
        canvas_len = canvas_y * canvas_x * batch_size
        # Create the canvas for this sample
        canvas = voxel_mean.new_zeros(canvas_channel, canvas_len)
        # Only include non-empty pillars
        indices = (
            voxel_coors[:, 0] * canvas_y * canvas_x +
            voxel_coors[:, 2] * canvas_x + voxel_coors[:, 3])
        # Scatter the blob back to the canvas
        canvas[:, indices.long()] = voxel_mean.t()

        # Step 2: get voxel mean for each point
        voxel_index = (
            pts_coors[:, 0] * canvas_y * canvas_x +
            pts_coors[:, 2] * canvas_x + pts_coors[:, 3])
        center_per_point = canvas[:, voxel_index.long()].t()
        return center_per_point

    def forward(self, features, coors):
        """
        features (torch.Tensor): NxC
        coors (torch.Tensor): Nx(1+NDim)
        """
        features_ls = [features]
        # Find distance of x, y, and z from cluster center
        if self._with_cluster_center:
            voxel_mean, mean_coors = self.cluster_scatter(features, coors)
            points_mean = self.map_voxel_center_to_point(
                coors, voxel_mean, mean_coors)
            # TODO: maybe also do cluster for reflectivity
            f_cluster = features[:, :3] - points_mean[:, :3]
            features_ls.append(f_cluster)

        # Find distance of x, y, and z from pillar center
        if self._with_voxel_center:
            f_center = features.new_zeros(size=(features.size(0), 2))
            f_center[:, 0] = features[:, 0] - (
                coors[:, 3].type_as(features) * self.vx + self.x_offset)
            f_center[:, 1] = features[:, 1] - (
                coors[:, 2].type_as(features) * self.vy + self.y_offset)
            features_ls.append(f_center)

        if self._with_distance:
            points_dist = torch.norm(features[:, :3], 2, 1, keepdim=True)
            features_ls.append(points_dist)

        # Combine together feature decorations
        features = torch.cat(features_ls, dim=-1)
        for i, pfn in enumerate(self.pfn_layers):
            point_feats = pfn(features)
            voxel_feats, voxel_coors = self.pfn_scatter(point_feats, coors)
            if i != len(self.pfn_layers) - 1:
                # need to concat voxel feats if it is not the last pfn
                feat_per_point = self.map_voxel_center_to_point(
                    coors, voxel_feats, voxel_coors)
                features = torch.cat([point_feats, feat_per_point], dim=1)

        return voxel_feats, voxel_coors


@VOXEL_ENCODERS.register_module
class AlignedPillarFeatureNet(nn.Module):

    def __init__(self,
                 num_input_features=4,
                 use_norm=True,
                 num_filters=(64, ),
                 with_distance=False,
                 with_cluster_center=True,
                 with_voxel_center=True,
                 voxel_size=(0.2, 0.2, 4),
                 point_cloud_range=(0, -40, -3, 70.4, 40, 1),
                 mode='max'):
        """ Pillar Feature Net.

        The network prepares the pillar features and performs forward pass
        through PFNLayers.

        Args:
            num_input_features (int): Number of input features, either x, y, z
                or x, y, z, r.
            use_norm (bool): Whether to include BatchNorm.
            num_filters (list[int]): Number of features in each of the N
                PFNLayers.
            with_distance (bool): Whether to include Euclidean distance to
                points.
            voxel_size (list[float]): Size of voxels, only utilize x and y
                size.
            point_cloud_range: (list[float]): Point cloud range, only
                utilize x and y min.
        """

        super(AlignedPillarFeatureNet, self).__init__()

        assert len(num_filters) > 0
        if with_cluster_center:
            print('Use cluster center')
            num_input_features += 3
        if with_voxel_center:
            print('Use voxel center')
            num_input_features += 2
        if with_distance:
            num_input_features += 1
        self._with_distance = with_distance
        self._with_cluster_center = with_cluster_center
        self._with_voxel_center = with_voxel_center

        # Create PillarFeatureNet layers
        num_filters = [num_input_features] + list(num_filters)
        pfn_layers = []
        for i in range(len(num_filters) - 1):
            in_filters = num_filters[i]
            out_filters = num_filters[i + 1]
            if i < len(num_filters) - 2:
                last_layer = False
            else:
                last_layer = True
            pfn_layers.append(
                PFNLayer(
                    in_filters,
                    out_filters,
                    use_norm,
                    last_layer=last_layer,
                    mode=mode))
        self.pfn_layers = nn.ModuleList(pfn_layers)

        # Need pillar (voxel) size and x/y offset in order to
        # calculate pillar offset
        self.vx = voxel_size[0]
        self.vy = voxel_size[1]
        self.vz = voxel_size[2]
        self.x_offset = self.vx / 2 + point_cloud_range[0]
        self.y_offset = self.vy / 2 + point_cloud_range[1]
        self.z_offset = self.vz / 2 + point_cloud_range[2]

    def forward(self, features, num_points, coors):
        features_ls = [features]
        # Find distance of x, y, and z from cluster center
        if self._with_cluster_center:
            points_mean = features[:, :, :3].sum(
                dim=1, keepdim=True) / num_points.type_as(features).view(
                    -1, 1, 1)
            f_cluster = features[:, :, :3] - points_mean
            features_ls.append(f_cluster)

        x_distance = features[:, :, 0] - (
            coors[:, 3].type_as(features).unsqueeze(1) * self.vx +
            self.x_offset)
        y_distance = features[:, :, 1] - (
            coors[:, 2].type_as(features).unsqueeze(1) * self.vy +
            self.y_offset)
        z_distance = features[:, :, 2] - (
            coors[:, 1].type_as(features).unsqueeze(1) * self.vz +
            self.z_offset)

        normed_x_distance = 1 - torch.abs(x_distance / self.vx)
        normed_y_distance = 1 - torch.abs(y_distance / self.vy)
        normed_z_distance = 1 - torch.abs(z_distance / self.vz)

        x_mask = torch.gt(normed_x_distance, 0).type_as(features)
        y_mask = torch.gt(normed_y_distance, 0).type_as(features)
        z_mask = torch.gt(normed_z_distance, 0).type_as(features)

        nonzero_points_mask = x_mask.mul(y_mask).mul(z_mask)
        aligned_distance = normed_x_distance.mul(normed_y_distance).mul(
            normed_z_distance).mul(nonzero_points_mask)

        # Find distance of x, y, and z from pillar center
        if self._with_voxel_center:
            f_center = features[:, :, :2]
            f_center[:, :, 0] = f_center[:, :, 0] - (
                coors[:, 3].type_as(features).unsqueeze(1) * self.vx +
                self.x_offset)
            f_center[:, :, 1] = f_center[:, :, 1] - (
                coors[:, 2].type_as(features).unsqueeze(1) * self.vy +
                self.y_offset)
            features_ls.append(f_center)

        if self._with_distance:
            points_dist = torch.norm(features[:, :, :3], 2, 2, keepdim=True)
            features_ls.append(points_dist)

        # Combine together feature decorations
        features = torch.cat(features_ls, dim=-1)

        # The feature decorations were calculated without regard to
        # whether pillar was empty. Need to ensure that
        # empty pillars remain set to zeros.
        voxel_count = features.shape[1]
        mask = get_paddings_indicator(num_points, voxel_count, axis=0)
        mask = torch.unsqueeze(mask, -1).type_as(features)
        features *= mask

        for pfn in self.pfn_layers:
            if pfn.last_vfe:
                features = pfn(features, aligned_distance)
            else:
                features = pfn(features)

        return features.squeeze()