sparse_encoder.py 6.92 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import torch.nn as nn

import mmdet3d.ops.spconv as spconv
from ..registry import MIDDLE_ENCODERS
from ..utils import build_norm_layer


@MIDDLE_ENCODERS.register_module
class SparseEncoder(nn.Module):

    def __init__(self,
                 in_channels,
                 output_shape,
                 pre_act,
                 norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.01)):
        super().__init__()
        self.sparse_shape = output_shape
        self.output_shape = output_shape
        self.in_channels = in_channels
        self.pre_act = pre_act
        # Spconv init all weight on its own
        # TODO: make the network could be modified

        if pre_act:
            self.conv_input = spconv.SparseSequential(
                spconv.SubMConv3d(
                    in_channels,
                    16,
                    3,
                    padding=1,
                    bias=False,
                    indice_key='subm1'), )
            block = self.pre_act_block
        else:
            norm_name, norm_layer = build_norm_layer(norm_cfg, 16)
            self.conv_input = spconv.SparseSequential(
                spconv.SubMConv3d(
                    in_channels,
                    16,
                    3,
                    padding=1,
                    bias=False,
                    indice_key='subm1'),
                norm_layer,
                nn.ReLU(),
            )
            block = self.post_act_block

        self.conv1 = spconv.SparseSequential(
            block(16, 16, 3, norm_cfg=norm_cfg, padding=1,
                  indice_key='subm1'), )

        self.conv2 = spconv.SparseSequential(
            # [1600, 1408, 41] -> [800, 704, 21]
            block(
                16,
                32,
                3,
                norm_cfg=norm_cfg,
                stride=2,
                padding=1,
                indice_key='spconv2',
                conv_type='spconv'),
            block(32, 32, 3, norm_cfg=norm_cfg, padding=1, indice_key='subm2'),
            block(32, 32, 3, norm_cfg=norm_cfg, padding=1, indice_key='subm2'),
        )

        self.conv3 = spconv.SparseSequential(
            # [800, 704, 21] -> [400, 352, 11]
            block(
                32,
                64,
                3,
                norm_cfg=norm_cfg,
                stride=2,
                padding=1,
                indice_key='spconv3',
                conv_type='spconv'),
            block(64, 64, 3, norm_cfg=norm_cfg, padding=1, indice_key='subm3'),
            block(64, 64, 3, norm_cfg=norm_cfg, padding=1, indice_key='subm3'),
        )

        self.conv4 = spconv.SparseSequential(
            # [400, 352, 11] -> [200, 176, 5]
            block(
                64,
                64,
                3,
                norm_cfg=norm_cfg,
                stride=2,
                padding=(0, 1, 1),
                indice_key='spconv4',
                conv_type='spconv'),
            block(64, 64, 3, norm_cfg=norm_cfg, padding=1, indice_key='subm4'),
            block(64, 64, 3, norm_cfg=norm_cfg, padding=1, indice_key='subm4'),
        )

        norm_name, norm_layer = build_norm_layer(norm_cfg, 128)
        self.conv_out = spconv.SparseSequential(
            # [200, 176, 5] -> [200, 176, 2]
            spconv.SparseConv3d(
                128,
                128, (3, 1, 1),
                stride=(2, 1, 1),
                padding=0,
                bias=False,
                indice_key='spconv_down2'),
            norm_layer,
            nn.ReLU(),
        )

    def forward(self, voxel_features, coors, batch_size):
        """
        :param voxel_features:  (N, C)
        :param coors:   (N, 4)  [batch_idx, z_idx, y_idx, x_idx]
        :param batch_size:
        :return:
        """
        coors = coors.int()
        input_sp_tensor = spconv.SparseConvTensor(voxel_features, coors,
                                                  self.sparse_shape,
                                                  batch_size)
        x = self.conv_input(input_sp_tensor)

        x_conv1 = self.conv1(x)
        x_conv2 = self.conv2(x_conv1)
        x_conv3 = self.conv3(x_conv2)
        x_conv4 = self.conv4(x_conv3)

        # for detection head
        # [200, 176, 5] -> [200, 176, 2]
        out = self.conv_out(x_conv4)
        spatial_features = out.dense()

        N, C, D, H, W = spatial_features.shape
        spatial_features = spatial_features.view(N, C * D, H, W)

        return spatial_features

    def pre_act_block(self,
                      in_channels,
                      out_channels,
                      kernel_size,
                      indice_key=None,
                      stride=1,
                      padding=0,
                      conv_type='subm',
                      norm_cfg=None):
        norm_name, norm_layer = build_norm_layer(norm_cfg, in_channels)
        if conv_type == 'subm':
            m = spconv.SparseSequential(
                norm_layer,
                nn.ReLU(inplace=True),
                spconv.SubMConv3d(
                    in_channels,
                    out_channels,
                    kernel_size,
                    padding=padding,
                    bias=False,
                    indice_key=indice_key),
            )
        elif conv_type == 'spconv':
            m = spconv.SparseSequential(
                norm_layer,
                nn.ReLU(inplace=True),
                spconv.SparseConv3d(
                    in_channels,
                    out_channels,
                    kernel_size,
                    stride=stride,
                    padding=padding,
                    bias=False,
                    indice_key=indice_key),
            )
        else:
            raise NotImplementedError
        return m

    def post_act_block(self,
                       in_channels,
                       out_channels,
                       kernel_size,
                       indice_key,
                       stride=1,
                       padding=0,
                       conv_type='subm',
                       norm_cfg=None):
        norm_name, norm_layer = build_norm_layer(norm_cfg, out_channels)
        if conv_type == 'subm':
            m = spconv.SparseSequential(
                spconv.SubMConv3d(
                    in_channels,
                    out_channels,
                    kernel_size,
                    bias=False,
                    indice_key=indice_key),
                norm_layer,
                nn.ReLU(inplace=True),
            )
        elif conv_type == 'spconv':
            m = spconv.SparseSequential(
                spconv.SparseConv3d(
                    in_channels,
                    out_channels,
                    kernel_size,
                    stride=stride,
                    padding=padding,
                    bias=False,
                    indice_key=indice_key),
                norm_layer,
                nn.ReLU(inplace=True),
            )
        else:
            raise NotImplementedError
        return m