"benchmarks/kernels/benchmark_grouped_gemm_cutlass.py" did not exist on "ceccb7160f027695f2e89eab8c279a6374d3f719"
boxvelo_head.py 9.53 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import numpy as np
import torch
from mmcv.cnn import normal_init

from mmdet3d.core import box_torch_ops, boxes3d_to_bev_torch_lidar
from mmdet3d.ops.iou3d.iou3d_utils import nms_gpu, nms_normal_gpu
from ..registry import HEADS
from ..utils import bias_init_with_prob
from .second_head import SECONDHead


@HEADS.register_module
class Anchor3DVeloHead(SECONDHead):
    """Anchor-based head for 3D anchor with velocity
    Args:
        in_channels (int): Number of channels in the input feature map.
        feat_channels (int): Number of channels of the feature map.
        anchor_scales (Iterable): Anchor scales.
        anchor_ratios (Iterable): Anchor aspect ratios.
        anchor_strides (Iterable): Anchor strides.
        anchor_base_sizes (Iterable): Anchor base sizes.
        target_means (Iterable): Mean values of regression targets.
        target_stds (Iterable): Std values of regression targets.
        loss_cls (dict): Config of classification loss.
        loss_bbox (dict): Config of localization loss.
    """  # noqa: W605

    def __init__(self,
                 class_names,
                 num_classes,
                 in_channels,
                 train_cfg,
                 test_cfg,
                 cache_anchor=False,
                 feat_channels=256,
                 use_direction_classifier=True,
                 encode_bg_as_zeros=False,
                 box_code_size=9,
                 anchor_generator=dict(type='AnchorGeneratorRange', ),
                 anchor_range=[0, -39.68, -1.78, 69.12, 39.68, -1.78],
                 anchor_strides=[2],
                 anchor_sizes=[[1.6, 3.9, 1.56]],
                 anchor_rotations=[0, 1.57],
                 anchor_custom_values=[0, 0],
                 assigner_per_size=False,
                 assign_per_class=False,
                 diff_rad_by_sin=True,
                 dir_offset=0,
                 dir_limit_offset=1,
                 target_means=(.0, .0, .0, .0),
                 target_stds=(1.0, 1.0, 1.0, 1.0),
                 bbox_coder=dict(type='ResidualCoder', ),
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     loss_weight=1.0),
                 loss_bbox=dict(
                     type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
                 loss_dir=dict(type='CrossEntropyLoss', loss_weight=0.2)):
        super().__init__(class_names, in_channels, train_cfg, test_cfg,
                         cache_anchor, feat_channels, use_direction_classifier,
                         encode_bg_as_zeros, box_code_size, anchor_generator,
                         anchor_range, anchor_strides, anchor_sizes,
                         anchor_rotations, anchor_custom_values,
                         assigner_per_size, assign_per_class, diff_rad_by_sin,
                         dir_offset, dir_limit_offset, target_means,
                         target_stds, bbox_coder, loss_cls, loss_bbox,
                         loss_dir)
        self.num_classes = num_classes
        # build head layers & losses
        if not self.use_sigmoid_cls:
            self.num_classes += 1
        self._init_layers()

    def init_weights(self):
        # pass
        # use the initialization when ready
        bias_cls = bias_init_with_prob(0.01)
        normal_init(self.conv_cls, std=0.01, bias=bias_cls)
        normal_init(self.conv_reg, std=0.01)

    @staticmethod
    def add_sin_difference(boxes1, boxes2):
        # Caution: the 7th dim is the rotation, (last dim without velo)
        rad_pred_encoding = torch.sin(boxes1[..., 6:7]) * torch.cos(
            boxes2[..., 6:7])
        rad_tg_encoding = torch.cos(boxes1[..., 6:7]) * torch.sin(boxes2[...,
                                                                         6:7])
        boxes1 = torch.cat(
            [boxes1[..., :6], rad_pred_encoding, boxes1[..., 7:]], dim=-1)
        boxes2 = torch.cat([boxes2[..., :6], rad_tg_encoding, boxes2[..., 7:]],
                           dim=-1)
        return boxes1, boxes2

    def get_bboxes_single(self,
                          cls_scores,
                          bbox_preds,
                          dir_cls_preds,
                          mlvl_anchors,
                          input_meta,
                          rescale=False):
        assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors)
        mlvl_bboxes = []
        mlvl_scores = []
        mlvl_dir_scores = []
        for cls_score, bbox_pred, dir_cls_pred, anchors in zip(
                cls_scores, bbox_preds, dir_cls_preds, mlvl_anchors):
            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
            assert cls_score.size()[-2:] == dir_cls_pred.size()[-2:]
            dir_cls_pred = dir_cls_pred.permute(1, 2, 0).reshape(-1, 2)
            dir_cls_score = torch.max(dir_cls_pred, dim=-1)[1]

            cls_score = cls_score.permute(1, 2,
                                          0).reshape(-1, self.num_classes)
            if self.use_sigmoid_cls:
                scores = cls_score.sigmoid()
            else:
                scores = cls_score.softmax(-1)
            bbox_pred = bbox_pred.permute(1, 2,
                                          0).reshape(-1, self.box_code_size)

            nms_pre = self.test_cfg.get('nms_pre', -1)
            if nms_pre > 0 and scores.shape[0] > nms_pre:
                if self.use_sigmoid_cls:
                    max_scores, _ = scores.max(dim=1)
                else:
                    max_scores, _ = scores[:, :-1].max(dim=1)
                _, topk_inds = max_scores.topk(nms_pre)
                anchors = anchors[topk_inds, :]
                bbox_pred = bbox_pred[topk_inds, :]
                scores = scores[topk_inds, :]
                dir_cls_score = dir_cls_score[topk_inds]

            bboxes = self.bbox_coder.decode_torch(anchors, bbox_pred,
                                                  self.target_means,
                                                  self.target_stds)
            mlvl_bboxes.append(bboxes)
            mlvl_scores.append(scores)
            mlvl_dir_scores.append(dir_cls_score)

        mlvl_bboxes = torch.cat(mlvl_bboxes)
        mlvl_bboxes_for_nms = boxes3d_to_bev_torch_lidar(mlvl_bboxes)
        mlvl_scores = torch.cat(mlvl_scores)
        mlvl_dir_scores = torch.cat(mlvl_dir_scores)

        if self.use_sigmoid_cls:
            # Add a dummy background class to the front when using sigmoid
            padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
            mlvl_scores = torch.cat([mlvl_scores, padding], dim=1)

        score_thr = self.test_cfg.get('score_thr', 0)
        result = self.multiclass_nms(mlvl_bboxes, mlvl_bboxes_for_nms,
                                     mlvl_scores, mlvl_dir_scores, score_thr,
                                     self.test_cfg.max_per_img)

        result.update(dict(sample_idx=input_meta['sample_idx']))
        return result

    def multiclass_nms(self, mlvl_bboxes, mlvl_bboxes_for_nms, mlvl_scores,
                       mlvl_dir_scores, score_thr, max_num):
        # do multi class nms
        # the fg class id range: [0, num_classes-1]
        num_classes = mlvl_scores.shape[1] - 1
        bboxes = []
        scores = []
        labels = []
        dir_scores = []
        for i in range(0, num_classes):
            # get bboxes and scores of this class
            cls_inds = mlvl_scores[:, i] > score_thr
            if not cls_inds.any():
                continue
            _scores = mlvl_scores[cls_inds, i]
            _bboxes_for_nms = mlvl_bboxes_for_nms[cls_inds, :]
            if self.test_cfg.use_rotate_nms:
                nms_func = nms_gpu
            else:
                nms_func = nms_normal_gpu
            selected = nms_func(_bboxes_for_nms, _scores,
                                self.test_cfg.nms_thr)

            _mlvl_bboxes = mlvl_bboxes[cls_inds, :]
            _mlvl_dir_scores = mlvl_dir_scores[cls_inds]

            if len(selected) > 0:
                bboxes.append(_mlvl_bboxes[selected])
                scores.append(_scores[selected])
                dir_scores.append(_mlvl_dir_scores[selected])
                dir_rot = box_torch_ops.limit_period(
                    bboxes[-1][..., 6] - self.dir_offset,
                    self.dir_limit_offset, np.pi)
                bboxes[-1][..., 6] = (
                    dir_rot + self.dir_offset +
                    np.pi * dir_scores[-1].to(bboxes[-1].dtype))

                cls_label = mlvl_bboxes.new_full((len(selected), ),
                                                 i,
                                                 dtype=torch.long)
                labels.append(cls_label)

        if bboxes:
            bboxes = torch.cat(bboxes, dim=0)
            scores = torch.cat(scores, dim=0)
            labels = torch.cat(labels, dim=0)
            dir_scores = torch.cat(dir_scores, dim=0)
            if bboxes.shape[0] > max_num:
                _, inds = scores.sort(descending=True)
                inds = inds[:max_num]
                bboxes = bboxes[inds, :]
                labels = labels[inds]
                scores = scores[inds]
                dir_scores = dir_scores[inds]
            return dict(
                box3d_lidar=bboxes.cpu(),
                scores=scores.cpu(),
                label_preds=labels.cpu(),
            )
        else:
            return dict(
                box3d_lidar=mlvl_bboxes.new_zeros([0,
                                                   self.box_code_size]).cpu(),
                scores=mlvl_bboxes.new_zeros([0]).cpu(),
                label_preds=mlvl_bboxes.new_zeros([0, 4]).cpu(),
            )