sampler.py 5.72 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from __future__ import division
import math

import numpy as np
import torch
from mmcv.runner import get_dist_info
from torch.utils.data import DistributedSampler as _DistributedSampler
from torch.utils.data import Sampler


class DistributedSampler(_DistributedSampler):

    def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True):
        super().__init__(dataset, num_replicas=num_replicas, rank=rank)
        self.shuffle = shuffle

    def __iter__(self):
        # deterministically shuffle based on epoch
        if self.shuffle:
            g = torch.Generator()
            g.manual_seed(self.epoch)
            indices = torch.randperm(len(self.dataset), generator=g).tolist()
        else:
            indices = torch.arange(len(self.dataset)).tolist()

        # add extra samples to make it evenly divisible
        indices += indices[:(self.total_size - len(indices))]
        assert len(indices) == self.total_size

        # subsample
        indices = indices[self.rank:self.total_size:self.num_replicas]
        assert len(indices) == self.num_samples

        return iter(indices)


class GroupSampler(Sampler):

    def __init__(self, dataset, samples_per_gpu=1):
        assert hasattr(dataset, 'flag')
        self.dataset = dataset
        self.samples_per_gpu = samples_per_gpu
        self.flag = dataset.flag.astype(np.int64)
        self.group_sizes = np.bincount(self.flag)
        self.num_samples = 0
        for i, size in enumerate(self.group_sizes):
            self.num_samples += int(np.ceil(
                size / self.samples_per_gpu)) * self.samples_per_gpu

    def __iter__(self):
        indices = []
        for i, size in enumerate(self.group_sizes):
            if size == 0:
                continue
            indice = np.where(self.flag == i)[0]
            assert len(indice) == size
            np.random.shuffle(indice)
            num_extra = int(np.ceil(size / self.samples_per_gpu)
                            ) * self.samples_per_gpu - len(indice)
            indice = np.concatenate(
                [indice, np.random.choice(indice, num_extra)])
            indices.append(indice)
        indices = np.concatenate(indices)
        indices = [
            indices[i * self.samples_per_gpu:(i + 1) * self.samples_per_gpu]
            for i in np.random.permutation(
                range(len(indices) // self.samples_per_gpu))
        ]
        indices = np.concatenate(indices)
        indices = indices.astype(np.int64).tolist()
        assert len(indices) == self.num_samples
        return iter(indices)

    def __len__(self):
        return self.num_samples


class DistributedGroupSampler(Sampler):
    """Sampler that restricts data loading to a subset of the dataset.
    It is especially useful in conjunction with
    :class:`torch.nn.parallel.DistributedDataParallel`. In such case, each
    process can pass a DistributedSampler instance as a DataLoader sampler,
    and load a subset of the original dataset that is exclusive to it.
    .. note::
        Dataset is assumed to be of constant size.
    Arguments:
        dataset: Dataset used for sampling.
        num_replicas (optional): Number of processes participating in
            distributed training.
        rank (optional): Rank of the current process within num_replicas.
    """

    def __init__(self,
                 dataset,
                 samples_per_gpu=1,
                 num_replicas=None,
                 rank=None):
        _rank, _num_replicas = get_dist_info()
        if num_replicas is None:
            num_replicas = _num_replicas
        if rank is None:
            rank = _rank
        self.dataset = dataset
        self.samples_per_gpu = samples_per_gpu
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0

        assert hasattr(self.dataset, 'flag')
        self.flag = self.dataset.flag
        self.group_sizes = np.bincount(self.flag)

        self.num_samples = 0
        for i, j in enumerate(self.group_sizes):
            self.num_samples += int(
                math.ceil(self.group_sizes[i] * 1.0 / self.samples_per_gpu /
                          self.num_replicas)) * self.samples_per_gpu
        self.total_size = self.num_samples * self.num_replicas

    def __iter__(self):
        # deterministically shuffle based on epoch
        g = torch.Generator()
        g.manual_seed(self.epoch)

        indices = []
        for i, size in enumerate(self.group_sizes):
            if size > 0:
                indice = np.where(self.flag == i)[0]
                assert len(indice) == size
                indice = indice[list(torch.randperm(int(size),
                                                    generator=g))].tolist()
                extra = int(
                    math.ceil(
                        size * 1.0 / self.samples_per_gpu / self.num_replicas)
                ) * self.samples_per_gpu * self.num_replicas - len(indice)
                # pad indice
                tmp = indice.copy()
                for _ in range(extra // size):
                    indice.extend(tmp)
                indice.extend(tmp[:extra % size])
                indices.extend(indice)

        assert len(indices) == self.total_size

        indices = [
            indices[j] for i in list(
                torch.randperm(
                    len(indices) // self.samples_per_gpu, generator=g))
            for j in range(i * self.samples_per_gpu, (i + 1) *
                           self.samples_per_gpu)
        ]

        # subsample
        offset = self.num_samples * self.rank
        indices = indices[offset:offset + self.num_samples]
        assert len(indices) == self.num_samples

        return iter(indices)

    def __len__(self):
        return self.num_samples

    def set_epoch(self, epoch):
        self.epoch = epoch