train.py 6.17 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import DistSamplerSeedHook, Runner

from mmdet3d.core import build_optimizer
from mmdet3d.datasets import build_dataloader, build_dataset
from mmdet.apis.train import parse_losses
from mmdet.core import (DistEvalHook, DistOptimizerHook, EvalHook,
                        Fp16OptimizerHook)
from mmdet.utils import get_root_logger


def batch_processor(model, data, train_mode):
    """Process a data batch.

    This method is required as an argument of Runner, which defines how to
    process a data batch and obtain proper outputs. The first 3 arguments of
    batch_processor are fixed.

    Args:
        model (nn.Module): A PyTorch model.
        data (dict): The data batch in a dict.
        train_mode (bool): Training mode or not. It may be useless for some
            models.

    Returns:
        dict: A dict containing losses and log vars.
    """
    losses = model(**data)
    loss, log_vars = parse_losses(losses)

    if 'img_meta' in data:
        num_samples = len(data['img_meta'].data)
    else:
        num_samples = len(data['img'].data)
    outputs = dict(loss=loss, log_vars=log_vars, num_samples=num_samples)

    return outputs


def train_detector(model,
                   dataset,
                   cfg,
                   distributed=False,
                   validate=False,
                   timestamp=None,
                   meta=None):
    logger = get_root_logger(cfg.log_level)

    # start training
    if distributed:
        _dist_train(
            model,
            dataset,
            cfg,
            validate=validate,
            logger=logger,
            timestamp=timestamp,
            meta=meta)
    else:
        _non_dist_train(
            model,
            dataset,
            cfg,
            validate=validate,
            logger=logger,
            timestamp=timestamp,
            meta=meta)


def _dist_train(model,
                dataset,
                cfg,
                validate=False,
                logger=None,
                timestamp=None,
                meta=None):
    # prepare data loaders
    dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
    data_loaders = [
        build_dataloader(
            ds,
            cfg.data.samples_per_gpu,
            cfg.data.workers_per_gpu,
            dist=True,
            seed=cfg.seed) for ds in dataset
    ]
    # put model on gpus
    find_unused_parameters = cfg.get('find_unused_parameters', False)
    # Sets the `find_unused_parameters` parameter in
    # torch.nn.parallel.DistributedDataParallel
    model = MMDistributedDataParallel(
        model.cuda(),
        device_ids=[torch.cuda.current_device()],
        broadcast_buffers=False,
        find_unused_parameters=find_unused_parameters)

    # build runner
    optimizer = build_optimizer(model, cfg.optimizer)
    runner = Runner(
        model,
        batch_processor,
        optimizer,
        cfg.work_dir,
        logger=logger,
        meta=meta)
    # an ugly walkaround to make the .log and .log.json filenames the same
    runner.timestamp = timestamp

    # fp16 setting
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config,
                                             **fp16_cfg)
    else:
        optimizer_config = DistOptimizerHook(**cfg.optimizer_config)

    # register hooks
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
                                   cfg.checkpoint_config, cfg.log_config)
    runner.register_hook(DistSamplerSeedHook())
    # register eval hooks
    if validate:
        val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
        val_dataloader = build_dataloader(
            val_dataset,
            samples_per_gpu=1,
            workers_per_gpu=cfg.data.workers_per_gpu,
            dist=True,
            shuffle=False)
        eval_cfg = cfg.get('evaluation', {})
        runner.register_hook(DistEvalHook(val_dataloader, **eval_cfg))

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs)


def _non_dist_train(model,
                    dataset,
                    cfg,
                    validate=False,
                    logger=None,
                    timestamp=None,
                    meta=None):
    # prepare data loaders
    dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
    data_loaders = [
        build_dataloader(
            ds,
            cfg.data.samples_per_gpu,
            cfg.data.workers_per_gpu,
            cfg.gpus,
            dist=False,
            seed=cfg.seed) for ds in dataset
    ]
    # put model on gpus
    model = MMDataParallel(model, device_ids=range(cfg.gpus)).cuda()

    # build runner
    optimizer = build_optimizer(model, cfg.optimizer)
    runner = Runner(
        model,
        batch_processor,
        optimizer,
        cfg.work_dir,
        logger=logger,
        meta=meta)
    # an ugly walkaround to make the .log and .log.json filenames the same
    runner.timestamp = timestamp
    # fp16 setting
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        optimizer_config = Fp16OptimizerHook(
            **cfg.optimizer_config, **fp16_cfg, distributed=False)
    else:
        optimizer_config = cfg.optimizer_config
    runner.register_training_hooks(cfg.lr_config, optimizer_config,
                                   cfg.checkpoint_config, cfg.log_config)

    # register eval hooks
    if validate:
        val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))
        val_dataloader = build_dataloader(
            val_dataset,
            samples_per_gpu=1,
            workers_per_gpu=cfg.data.workers_per_gpu,
            dist=False,
            shuffle=False)
        eval_cfg = cfg.get('evaluation', {})
        runner.register_hook(EvalHook(val_dataloader, **eval_cfg))

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow, cfg.total_epochs)