MODEL_ZOO.md 42.6 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
# Benchmark and Model Zoo

## Environment

### Hardware

- 8 NVIDIA Tesla V100 GPUs
- Intel Xeon 4114 CPU @ 2.20GHz

### Software environment

- Python 3.6 / 3.7
- PyTorch 1.1
- CUDA 9.0.176
- CUDNN 7.0.4
- NCCL 2.1.15

## Mirror sites

We use AWS as the main site to host our model zoo, and maintain a mirror on aliyun.
You can replace `https://s3.ap-northeast-2.amazonaws.com/open-mmlab` with `https://open-mmlab.oss-cn-beijing.aliyuncs.com` in model urls.

## Common settings

- All FPN baselines and RPN-C4 baselines were trained using 8 GPU with a batch size of 16 (2 images per GPU). Other C4 baselines were trained using 8 GPU with a batch size of 8 (1 image per GPU).
- All models were trained on `coco_2017_train`, and tested on the `coco_2017_val`.
- We use distributed training and BN layer stats are fixed.
- We adopt the same training schedules as Detectron. 1x indicates 12 epochs and 2x indicates 24 epochs, which corresponds to slightly less iterations than Detectron and the difference can be ignored.
- All pytorch-style pretrained backbones on ImageNet are from PyTorch model zoo.
- For fair comparison with other codebases, we report the GPU memory as the maximum value of `torch.cuda.max_memory_allocated()` for all 8 GPUs. Note that this value is usually less than what `nvidia-smi` shows.
- We report the inference time as the overall time including data loading, network forwarding and post processing.


## Baselines

More models with different backbones will be added to the model zoo.

### RPN

|    Backbone     |  Style  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | AR1000 |                                                          Download                                                          |
| :-------------: | :-----: | :-----: | :------: | :-----------------: | :------------: | :----: | :------------------------------------------------------------------------------------------------------------------------: |
|     R-50-C4     |  caffe  |   1x    |    -     |          -          |      20.5      |  51.1  |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_caffe_c4_1x-ea7d3428.pth)       |
|     R-50-C4     |  caffe  |   2x    |   2.2    |        0.17         |      20.3      |  52.2  |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_caffe_c4_2x-c6d5b958.pth)       |
|     R-50-C4     | pytorch |   1x    |    -     |          -          |      20.1      |  50.2  |         [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_c4_1x-eb38972b.pth)          |
|     R-50-C4     | pytorch |   2x    |    -     |          -          |      20.0      |  51.1  |         [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_c4_2x-3d4c1e14.pth)          |
|    R-50-FPN     |  caffe  |   1x    |   3.3    |        0.253        |      16.9      |  58.2  |                                                             -                                                              |
|    R-50-FPN     | pytorch |   1x    |   3.5    |        0.276        |      17.7      |  57.1  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_fpn_1x_20181010-4a9c0712.pth)     |
|    R-50-FPN     | pytorch |   2x    |    -     |          -          |       -        |  57.6  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_fpn_2x_20181010-88a4a471.pth)     |
|    R-101-FPN    |  caffe  |   1x    |   5.2    |        0.379        |      13.9      |  59.4  |                                                             -                                                              |
|    R-101-FPN    | pytorch |   1x    |   5.4    |        0.396        |      14.4      |  58.6  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r101_fpn_1x_20181129-f50da4bd.pth)    |
|    R-101-FPN    | pytorch |   2x    |    -     |          -          |       -        |  59.1  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r101_fpn_2x_20181129-e42c6c9a.pth)    |
| X-101-32x4d-FPN | pytorch |   1x    |   6.6    |        0.589        |      11.8      |  59.4  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_x101_32x4d_fpn_1x_20181218-7e379d26.pth) |
| X-101-32x4d-FPN | pytorch |   2x    |    -     |          -          |       -        |  59.9  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_x101_32x4d_fpn_2x_20181218-0510af40.pth) |
| X-101-64x4d-FPN | pytorch |   1x    |   9.5    |        0.955        |      8.3       |  59.8  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_x101_64x4d_fpn_1x_20181218-c1a24f1f.pth) |
| X-101-64x4d-FPN | pytorch |   2x    |    -     |          -          |       -        |  60.0  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_x101_64x4d_fpn_2x_20181218-c22bdd70.pth) |

### Faster R-CNN

|    Backbone     |  Style  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP |                                                              Download                                                              |
| :-------------: | :-----: | :-----: | :------: | :-----------------: | :------------: | :----: | :--------------------------------------------------------------------------------------------------------------------------------: |
|     R-50-C4     |  caffe  |   1x    |    -     |          -          |      9.5       |  34.9  |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_caffe_c4_1x-75ecfdfa.pth)       |
|     R-50-C4     |  caffe  |   2x    |   4.0    |        0.39         |      9.3       |  36.5  |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_caffe_c4_2x-71c67f27.pth)       |
|     R-50-C4     | pytorch |   1x    |    -     |          -          |      9.3       |  33.9  |         [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_c4_1x-642cf91f.pth)          |
|     R-50-C4     | pytorch |   2x    |    -     |          -          |      9.4       |  35.9  |         [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_c4_2x-6e4fdf4f.pth)          |
|    R-50-FPN     |  caffe  |   1x    |   3.6    |        0.333        |      13.5      |  36.6  |                                                                 -                                                                  |
|    R-50-FPN     | pytorch |   1x    |   3.8    |        0.353        |      13.6      |  36.4  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth)     |
|    R-50-FPN     | pytorch |   2x    |    -     |          -          |       -        |  37.7  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_2x_20181010-443129e1.pth)     |
|    R-101-FPN    |  caffe  |   1x    |   5.5    |        0.465        |      11.5      |  38.8  |                                                                 -                                                                  |
|    R-101-FPN    | pytorch |   1x    |   5.7    |        0.474        |      11.9      |  38.5  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r101_fpn_1x_20181129-d1468807.pth)    |
|    R-101-FPN    | pytorch |   2x    |    -     |          -          |       -        |  39.4  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r101_fpn_2x_20181129-73e7ade7.pth)    |
| X-101-32x4d-FPN | pytorch |   1x    |   6.9    |        0.672        |      10.3      |  40.1  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_32x4d_fpn_1x_20181218-ad81c133.pth) |
| X-101-32x4d-FPN | pytorch |   2x    |    -     |          -          |       -        |  40.4  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_32x4d_fpn_2x_20181218-0ed58946.pth) |
| X-101-64x4d-FPN | pytorch |   1x    |   9.8    |        1.040        |      7.3       |  41.3  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_64x4d_fpn_1x_20181218-c9c69c8f.pth) |
| X-101-64x4d-FPN | pytorch |   2x    |    -     |          -          |       -        |  40.7  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_x101_64x4d_fpn_2x_20181218-fe94f9b8.pth) |
|   HRNetV2p-W18   | pytorch |   1x    |    -     |          -          |       -        |  36.1  |    [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/faster_rcnn_hrnetv2p_w18_1x_20190522-e368c387.pth)    |
|   HRNetV2p-W18   | pytorch |   2x    |    -     |          -          |       -        |  38.3  |    [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/faster_rcnn_hrnetv2p_w18_2x_20190810-9c8615d5.pth) |
|   HRNetV2p-W32   | pytorch |   1x    |    -     |          -          |       -        |  39.5  |    [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/faster_rcnn_hrnetv2p_w32_1x_20190522-d22f1fef.pth)    |
|   HRNetV2p-W32   | pytorch |   2x    |    -     |          -          |       -        |  40.6  |    [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/faster_rcnn_hrnetv2p_w32_2x_20190810-24e8912a.pth) |
|   HRNetV2p-W48   | pytorch |   1x    |    -     |          -          |       -        |  40.9  |    [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/faster_rcnn_hrnetv2p_w48_1x_20190820-5c6d0903.pth)    |
|   HRNetV2p-W48   | pytorch |   2x    |    -     |          -          |       -        |  41.5  |    [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/faster_rcnn_hrnetv2p_w48_2x_20190820-79fb8bfc.pth) |


### Mask R-CNN

|    Backbone     |  Style  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP |                                                             Download                                                             |
| :-------------: | :-----: | :-----: | :------: | :-----------------: | :------------: | :----: | :-----: | :------------------------------------------------------------------------------------------------------------------------------: |
|     R-50-C4     |  caffe  |   1x    |    -     |          -          |      8.1       |  35.9  |  31.5   |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_caffe_c4_1x-02a4ad3b.pth)       |
|     R-50-C4     |  caffe  |   2x    |   4.2    |        0.43         |      8.1       |  37.9  |  32.9   |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_caffe_c4_2x-d150973a.pth)       |
|     R-50-C4     | pytorch |   1x    |    -     |          -          |      7.9       |  35.1  |  31.2   |         [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_c4_1x-a83bdd40.pth)          |
|     R-50-C4     | pytorch |   2x    |    -     |          -          |      8.0       |  37.2  |  32.5   |         [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_c4_2x-3cf169a9.pth)          |
|    R-50-FPN     |  caffe  |   1x    |   3.8    |        0.430        |      10.2      |  37.4  |  34.3   |                                                                -                                                                 |
|    R-50-FPN     | pytorch |   1x    |   3.9    |        0.453        |      10.6      |  37.3  |  34.2   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_1x_20181010-069fa190.pth)     |
|    R-50-FPN     | pytorch |   2x    |    -     |          -          |       -        |  38.5  |  35.1   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_2x_20181010-41d35c05.pth)     |
|    R-101-FPN    |  caffe  |   1x    |   5.7    |        0.534        |      9.4       |  39.9  |  36.1   |                                                                -                                                                 |
|    R-101-FPN    | pytorch |   1x    |   5.8    |        0.571        |      9.5       |  39.4  |  35.9   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_1x_20181129-34ad1961.pth)    |
|    R-101-FPN    | pytorch |   2x    |    -     |          -          |       -        |  40.3  |  36.5   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_2x_20181129-a254bdfc.pth)    |
| X-101-32x4d-FPN | pytorch |   1x    |   7.1    |        0.759        |      8.3       |  41.1  |  37.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_32x4d_fpn_1x_20181218-44e635cc.pth) |
| X-101-32x4d-FPN | pytorch |   2x    |    -     |          -          |       -        |  41.4  |  37.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_32x4d_fpn_2x_20181218-f023dffa.pth) |
| X-101-64x4d-FPN | pytorch |   1x    |   10.0   |        1.102        |      6.5       |  42.1  |  38.0   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_64x4d_fpn_1x_20181218-cb159987.pth) |
| X-101-64x4d-FPN | pytorch |   2x    |    -     |          -          |       -        |  42.0  |  37.7   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_x101_64x4d_fpn_2x_20181218-ea936e44.pth) |
|   HRNetV2p-W18   | pytorch |   1x    |    -     |          -          |       -        |  37.3  |  34.2   |    [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/mask_rcnn_hrnetv2p_w18_1x_20190522-c8ad459f.pth)    |
|   HRNetV2p-W18   | pytorch |   2x    |    -     |          -          |       -        |  39.2  |  35.7   |    [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/mask_rcnn_hrnetv2p_w18_2x_20190810-1e4747eb.pth)   |
|   HRNetV2p-W32   | pytorch |   1x    |    -     |          -          |       -        |  40.7  |  36.8   |    [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/mask_rcnn_hrnetv2p_w32_1x_20190522-374aaa00.pth)    |
|   HRNetV2p-W32   | pytorch |   2x    |    -     |          -          |       -        |  41.7  |  37.5   |    [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/mask_rcnn_hrnetv2p_w32_2x_20190810-773eca75.pth) |
|   HRNetV2p-W48   | pytorch |   1x    |    -     |          -          |       -        |  42.4  |  38.1   |    [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/mask_rcnn_hrnetv2p_w48_1x_20190820-0923d1ad.pth) |
|   HRNetV2p-W48   | pytorch |   2x    |    -     |          -          |       -        |  42.9  |  38.3   |    [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/mask_rcnn_hrnetv2p_w48_2x_20190820-70df51b2.pth) |

### Fast R-CNN (with pre-computed proposals)

| Backbone  |  Style  |  Type  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP |                                                            Download                                                             |
| :-------: | :-----: | :----: | :-----: | :------: | :-----------------: | :------------: | :----: | :-----: | :-----------------------------------------------------------------------------------------------------------------------------: |
|  R-50-C4  |  caffe  | Faster |   1x    |    -     |          -          |      6.7       |  35.0  |    -    |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_caffe_c4_1x-0ef9a60b.pth)      |
|  R-50-C4  |  caffe  | Faster |   2x    |   3.8    |        0.34         |      6.6       |  36.4  |    -    |         [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_c4_2x-657a9fc6.pth)         |
|  R-50-C4  | pytorch | Faster |   1x    |    -     |          -          |      6.3       |  34.2  |    -    |         [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_c4_1x-2bc00ca9.pth)         |
|  R-50-C4  | pytorch | Faster |   2x    |    -     |          -          |      6.1       |  35.8  |    -    |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_caffe_c4_2x-9171d0fc.pth)      |
| R-50-FPN  |  caffe  | Faster |   1x    |   3.3    |        0.242        |      18.4      |  36.6  |    -    |                                                                -                                                                |
| R-50-FPN  | pytorch | Faster |   1x    |   3.5    |        0.250        |      16.5      |  35.8  |    -    |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_fpn_1x_20181010-08160859.pth)    |
|  R-50-C4  |  caffe  |  Mask  |   1x    |    -     |          -          |      8.1       |  35.9  |  31.5   |   [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_caffe_c4_1x-b43f7f3c.pth)    |
|  R-50-C4  |  caffe  |  Mask  |   2x    |   4.2    |        0.43         |      8.1       |  37.9  |  32.9   |   [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_caffe_c4_2x-e3580184.pth)    |
|  R-50-C4  | pytorch |  Mask  |   1x    |    -     |          -          |      7.9       |  35.1  |  31.2   |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_c4_1x-bc7fa8c8.pth)       |
|  R-50-C4  | pytorch |  Mask  |   2x    |    -     |          -          |      8.0       |  37.2  |  32.5   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_fpn_2x_20181010-5048cb03.pth)  |
| R-50-FPN  | pytorch | Faster |   2x    |    -     |          -          |       -        |  37.1  |    -    |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_fpn_2x_20181010-d263ada5.pth)    |
| R-101-FPN |  caffe  | Faster |   1x    |   5.2    |        0.355        |      14.4      |  38.6  |    -    |                                                                -                                                                |
| R-101-FPN | pytorch | Faster |   1x    |   5.4    |        0.388        |      13.2      |  38.1  |    -    |   [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r101_fpn_1x_20181129-ffaa2eb0.pth)    |
| R-101-FPN | pytorch | Faster |   2x    |    -     |          -          |       -        |  38.8  |    -    |   [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r101_fpn_2x_20181129-9dba92ce.pth)    |
| R-50-FPN  |  caffe  |  Mask  |   1x    |   3.4    |        0.328        |      12.8      |  37.3  |  34.5   |                                                                -                                                                |
| R-50-FPN  | pytorch |  Mask  |   1x    |   3.5    |        0.346        |      12.7      |  36.8  |  34.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_fpn_1x_20181010-e030a38f.pth)  |
| R-50-FPN  | pytorch |  Mask  |   2x    |    -     |          -          |       -        |  37.9  |  34.8   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_fpn_2x_20181010-5048cb03.pth)  |
| R-101-FPN |  caffe  |  Mask  |   1x    |   5.2    |        0.429        |      11.2      |  39.4  |  36.1   |                                                                -                                                                |
| R-101-FPN | pytorch |  Mask  |   1x    |   5.4    |        0.462        |      10.9      |  38.9  |  35.8   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r101_fpn_1x_20181129-2273fa9b.pth) |
| R-101-FPN | pytorch |  Mask  |   2x    |    -     |          -          |       -        |  39.9  |  36.4   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r101_fpn_2x_20181129-bf63ec5e.pth) |

### RetinaNet

|    Backbone     |  Style  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP |                                                             Download                                                             |
| :-------------: | :-----: | :-----: | :------: | :-----------------: | :------------: | :----: | :------------------------------------------------------------------------------------------------------------------------------: |
|    R-50-FPN     |  caffe  |   1x    |   3.4    |        0.285        |      12.5      |  35.8  |                                                                -                                                                 |
|    R-50-FPN     | pytorch |   1x    |   3.6    |        0.308        |      12.1      |  35.6  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r50_fpn_1x_20181125-7b0c2548.pth)     |
|    R-50-FPN     | pytorch |   2x    |    -     |          -          |       -        |  36.4  |    [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/retinanet_r50_fpn_2x_20190616-75574209.pth)     |
|    R-101-FPN    |  caffe  |   1x    |   5.3    |        0.410        |      10.4      |  37.8  |                                                                -                                                                 |
|    R-101-FPN    | pytorch |   1x    |   5.5    |        0.429        |      10.9      |  37.7  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r101_fpn_1x_20181129-f016f384.pth)    |
|    R-101-FPN    | pytorch |   2x    |    -     |          -          |       -        |  38.1  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r101_fpn_2x_20181129-72c14526.pth)    |
| X-101-32x4d-FPN | pytorch |   1x    |   6.7    |        0.632        |      9.3       |  39.0  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_x101_32x4d_fpn_1x_20190501-967812ba.pth) |
| X-101-32x4d-FPN | pytorch |   2x    |    -     |          -          |       -        |  39.3  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_x101_32x4d_fpn_2x_20181218-8596452d.pth) |
| X-101-64x4d-FPN | pytorch |   1x    |   9.6    |        0.993        |      7.0       |  40.0  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_x101_64x4d_fpn_1x_20181218-a0a22662.pth) |
| X-101-64x4d-FPN | pytorch |   2x    |    -     |          -          |       -        |  39.6  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_x101_64x4d_fpn_2x_20181218-5e88d045.pth) |

### Cascade R-CNN

|    Backbone     |  Style  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP |                                                              Download                                                               |
| :-------------: | :-----: | :-----: | :------: | :-----------------: | :------------: | :----: | :---------------------------------------------------------------------------------------------------------------------------------: |
|     R-50-C4     |  caffe  |   1x    |   8.7    |        0.92         |      5.0       |  38.7  |      [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r50_caffe_c4_1x-7c85c62b.pth)       |
|    R-50-FPN     |  caffe  |   1x    |   3.9    |        0.464        |      10.9      |  40.5  |                                                                  -                                                                  |
|    R-50-FPN     | pytorch |   1x    |   4.1    |        0.455        |      11.9      |  40.4  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r50_fpn_1x_20190501-3b6211ab.pth)     |
|    R-50-FPN     | pytorch |   20e   |    -     |          -          |       -        |  41.1  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r50_fpn_20e_20181123-db483a09.pth)    |
|    R-101-FPN    |  caffe  |   1x    |   5.8    |        0.569        |      9.6       |  42.4  |                                                                  -                                                                  |
|    R-101-FPN    | pytorch |   1x    |   6.0    |        0.584        |      10.3      |  42.0  |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r101_fpn_1x_20181129-d64ebac7.pth)    |
|    R-101-FPN    | pytorch |   20e   |    -     |          -          |       -        |  42.5  |   [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r101_fpn_20e_20181129-b46dcede.pth)    |
| X-101-32x4d-FPN | pytorch |   1x    |   7.2    |        0.770        |      8.9       |  43.6  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_32x4d_fpn_1x_20190501-af628be5.pth) |
| X-101-32x4d-FPN | pytorch |   20e   |    -     |          -          |       -        |  44.0  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_32x4d_fpn_2x_20181218-28f73c4c.pth) |
| X-101-64x4d-FPN | pytorch |   1x    |   10.0   |        1.133        |      6.7       |  44.5  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_64x4d_fpn_1x_20181218-e2dc376a.pth) |
| X-101-64x4d-FPN | pytorch |   20e   |    -     |          -          |       -        |  44.7  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_x101_64x4d_fpn_2x_20181218-5add321e.pth) |
|   HRNetV2p-W18   | pytorch |   20e   |    -     |          -          |       -        |  41.2  | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/cascade_rcnn_hrnetv2p_w18_20e_20190810-132012d0.pth) |
|   HRNetV2p-W32   | pytorch |   20e   |    -     |          -          |       -        |  43.7  | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/cascade_rcnn_hrnetv2p_w32_20e_20190522-55bec4ee.pth)|
|   HRNetV2p-W48   | pytorch |   20e   |    -     |          -          |       -        |  44.6  | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/cascade_rcnn_hrnetv2p_w48_20e_20190810-f40ed8e1.pth) |

### Cascade Mask R-CNN

|    Backbone     |  Style  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP |                                                                 Download                                                                  |
| :-------------: | :-----: | :-----: | :------: | :-----------------: | :------------: | :----: | :-----: | :---------------------------------------------------------------------------------------------------------------------------------------: |
|     R-50-C4     |  caffe  |   1x    |   9.1    |        0.99         |      4.5       |  39.3  |  32.8   |       [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r50_caffe_c4_1x-f72cc254.pth)       |
|    R-50-FPN     |  caffe  |   1x    |   5.1    |        0.692        |      7.6       |  40.9  |  35.5   |                                                                     -                                                                     |
|    R-50-FPN     | pytorch |   1x    |   5.3    |        0.683        |      7.4       |  41.2  |  35.7   |     [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r50_fpn_1x_20181123-88b170c9.pth)     |
|    R-50-FPN     | pytorch |   20e   |    -     |          -          |       -        |  42.3  |  36.6   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r50_fpn_20e_20181123-6e0c9713.pth)     |
|    R-101-FPN    |  caffe  |   1x    |   7.0    |        0.803        |      7.2       |  43.1  |  37.2   |                                                                     -                                                                     |
|    R-101-FPN    | pytorch |   1x    |   7.2    |        0.807        |      6.8       |  42.6  |  37.0   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r101_fpn_1x_20181129-64f00602.pth)     |
|    R-101-FPN    | pytorch |   20e   |    -     |          -          |       -        |  43.3  |  37.6   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r101_fpn_20e_20181129-cb85151d.pth)    |
| X-101-32x4d-FPN | pytorch |   1x    |   8.4    |        0.976        |      6.6       |  44.4  |  38.2   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_32x4d_fpn_1x_20181218-1d944c89.pth)  |
| X-101-32x4d-FPN | pytorch |   20e   |    -     |          -          |       -        |  44.7  |  38.6   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_32x4d_fpn_20e_20181218-761a3473.pth) |
| X-101-64x4d-FPN | pytorch |   1x    |   11.4   |        1.33         |      5.3       |  45.4  |  39.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_64x4d_fpn_1x_20190501-827e0a70.pth)  |
| X-101-64x4d-FPN | pytorch |   20e   |    -     |          -          |       -        |  45.7  |  39.4   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_x101_64x4d_fpn_20e_20181218-630773a7.pth) |
|   HRNetV2p-W18   | pytorch |   20e   |    -     |          -          |       -        |  41.9  |  36.4   | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_20190810-054fb7bf.pth) |
|   HRNetV2p-W32   | pytorch |   20e   |    -     |          -          |       -        |  44.5  |  38.5   | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_20190810-76f61cd0.pth) |
|   HRNetV2p-W48   | pytorch |   20e   |    -     |          -          |       -        |  46.0  |  39.5   | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/cascade_mask_rcnn_hrnetv2p_w48_20e_20190810-d04a1415.pth) |

**Notes:**

- The `20e` schedule in Cascade (Mask) R-CNN indicates decreasing the lr at 16 and 19 epochs, with a total of 20 epochs.

### Hybrid Task Cascade (HTC)

|    Backbone     |  Style  | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP |                                                            Download                                                             |
| :-------------: | :-----: | :-----: | :------: | :-----------------: | :------------: | :----: | :-----: | :-----------------------------------------------------------------------------------------------------------------------------: |
|    R-50-FPN     | pytorch |   1x    |   7.4    |        0.936        |      4.1       |  42.1  |  37.3   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_r50_fpn_1x_20190408-878c1712.pth)     |
|    R-50-FPN     | pytorch |   20e   |    -     |          -          |       -        |  43.2  |  38.1   |    [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_r50_fpn_20e_20190408-c03b7015.pth)     |
|    R-101-FPN    | pytorch |   20e   |   9.3    |        1.051        |      4.0       |  44.9  |  39.4   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_r101_fpn_20e_20190408-a2e586db.pth)    |
| X-101-32x4d-FPN | pytorch |   20e   |   5.8    |        0.769        |      3.8       |  46.1  |  40.3   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_x101_32x4d_fpn_20e_20190408-9eae4d0b.pth) |
| X-101-64x4d-FPN | pytorch |   20e   |   7.5    |        1.120        |      3.5       |  46.9  |  40.8   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/htc/htc_x101_64x4d_fpn_20e_20190408-497f2561.pth) |
|   HRNetV2p-W18   | pytorch |   20e   |    -     |          -          |       -        |  43.1  |  37.9   | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/htc_hrnetv2p_w18_20e_20190810-d70072af.pth) |
|   HRNetV2p-W32   | pytorch |   20e   |    -     |          -          |       -        |  45.3  |  39.6   | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/htc_hrnetv2p_w32_20e_20190810-82f9ef5a.pth) |
|   HRNetV2p-W48   | pytorch |   20e   |    -     |          -          |       -        |  46.8  | 40.7    | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/htc_hrnetv2p_w48_20e_20190810-f6d2c3fd.pth) |
|   HRNetV2p-W48   | pytorch |   28e   |    -     |          -          |       -        |  47.0  |  41.0   | [model](https://open-mmlab.s3.ap-northeast-2.amazonaws.com/mmdetection/models/hrnet/htc_hrnetv2p_w48_28e_20190810-a4274b38.pth) |

**Notes:**

- Please refer to [Hybrid Task Cascade](https://github.com/open-mmlab/mmdetection/blob/master/configs/htc) for details and more a powerful model (50.7/43.9).

### SSD

| Backbone | Size  | Style | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP |                                                             Download                                                              |
| :------: | :---: | :---: | :-----: | :------: | :-----------------: | :------------: | :----: | :-------------------------------------------------------------------------------------------------------------------------------: |
|  VGG16   |  300  | caffe |  120e   |   3.5    |        0.256        |  25.9 / 34.6   |  25.7  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd300_coco_vgg16_caffe_120e_20181221-84d7110b.pth) |
|  VGG16   |  512  | caffe |  120e   |   7.6    |        0.412        |  20.7 / 25.4   |  29.3  | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/ssd512_coco_vgg16_caffe_120e_20181221-d48b0be8.pth) |

**Notes:**

- `cudnn.benchmark` is set as `True` for SSD training and testing.
- Inference time is reported for batch size = 1 and batch size = 8.
- The speed on COCO and VOC are different due to model parameters and nms.

### Group Normalization (GN)

Please refer to [Group Normalization](https://github.com/open-mmlab/mmdetection/blob/master/configs/gn) for details.

### Weight Standardization

Please refer to [Weight Standardization](https://github.com/open-mmlab/mmdetection/blob/master/configs/gn+ws) for details.

### Deformable Convolution v2

Please refer to [Deformable Convolutional Networks](https://github.com/open-mmlab/mmdetection/blob/master/configs/dcn) for details.

### CARAFE: Content-Aware ReAssembly of FEatures
Please refer to [CARAFE](https://github.com/open-mmlab/mmdetection/blob/master/configs/carafe) for details.

### Instaboost

Please refer to [Instaboost](https://github.com/open-mmlab/mmdetection/blob/master/configs/instaboost) for details.

### Libra R-CNN

Please refer to [Libra R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/libra_rcnn) for details.

### Guided Anchoring

Please refer to [Guided Anchoring](https://github.com/open-mmlab/mmdetection/blob/master/configs/guided_anchoring) for details.

### FCOS

Please refer to [FCOS](https://github.com/open-mmlab/mmdetection/blob/master/configs/fcos) for details.

### FoveaBox

Please refer to [FoveaBox](https://github.com/open-mmlab/mmdetection/blob/master/configs/foveabox) for details.

### RepPoints

Please refer to [RepPoints](https://github.com/open-mmlab/mmdetection/blob/master/configs/reppoints) for details.

### FreeAnchor

Please refer to [FreeAnchor](https://github.com/open-mmlab/mmdetection/blob/master/configs/free_anchor) for details.

### Grid R-CNN (plus)

Please refer to [Grid R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/grid_rcnn) for details.

### GHM

Please refer to [GHM](https://github.com/open-mmlab/mmdetection/blob/master/configs/ghm) for details.

### GCNet

Please refer to [GCNet](https://github.com/open-mmlab/mmdetection/blob/master/configs/gcnet) for details.

### HRNet
Please refer to [HRNet](https://github.com/open-mmlab/mmdetection/blob/master/configs/hrnet) for details.

### Mask Scoring R-CNN

Please refer to [Mask Scoring R-CNN](https://github.com/open-mmlab/mmdetection/blob/master/configs/ms_rcnn) for details.

### Train from Scratch

Please refer to [Rethinking ImageNet Pre-training](https://github.com/open-mmlab/mmdetection/blob/master/configs/scratch) for details.

### NAS-FPN
Please refer to [NAS-FPN](https://github.com/open-mmlab/mmdetection/blob/master/configs/nas_fpn) for details.

### ATSS
Please refer to [ATSS](https://github.com/open-mmlab/mmdetection/blob/master/configs/atss) for details.

### Other datasets

We also benchmark some methods on [PASCAL VOC](https://github.com/open-mmlab/mmdetection/blob/master/configs/pascal_voc), [Cityscapes](https://github.com/open-mmlab/mmdetection/blob/master/configs/cityscapes) and [WIDER FACE](https://github.com/open-mmlab/mmdetection/blob/master/configs/wider_face).


## Comparison with Detectron and maskrcnn-benchmark

We compare mmdetection with [Detectron](https://github.com/facebookresearch/Detectron)
and [maskrcnn-benchmark](https://github.com/facebookresearch/maskrcnn-benchmark). The backbone used is R-50-FPN.

In general, mmdetection has 3 advantages over Detectron.

- **Higher performance** (especially in terms of mask AP)
- **Faster training speed**
- **Memory efficient**

### Performance

Detectron and maskrcnn-benchmark use caffe-style ResNet as the backbone.
We report results using both caffe-style (weights converted from
[here](https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md#imagenet-pretrained-models))
and pytorch-style (weights from the official model zoo) ResNet backbone,
indicated as *pytorch-style results* / *caffe-style results*.

We find that pytorch-style ResNet usually converges slower than caffe-style ResNet,
thus leading to slightly lower results in 1x schedule, but the final results
of 2x schedule is higher.

<table>
  <tr>
    <th>Type</th>
    <th>Lr schd</th>
    <th>Detectron</th>
    <th>maskrcnn-benchmark</th>
    <th>mmdetection</th>
  </tr>
  <tr>
    <td rowspan="2">RPN</td>
    <td>1x</td>
    <td>57.2</td>
    <td>-</td>
    <td>57.1 / 58.2</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>-</td>
    <td>-</td>
    <td>57.6 / -</td>
  </tr>
  <tr>
    <td rowspan="2">Faster R-CNN</td>
    <td>1x</td>
    <td>36.7</td>
    <td>36.8</td>
    <td>36.4 / 36.6</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>37.9</td>
    <td>-</td>
    <td>37.7 / -</td>
  </tr>
  <tr>
    <td rowspan="2">Mask R-CNN</td>
    <td>1x</td>
    <td>37.7 &amp; 33.9</td>
    <td>37.8 &amp; 34.2</td>
    <td>37.3 &amp; 34.2 / 37.4 &amp; 34.3</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>38.6 &amp; 34.5</td>
    <td>-</td>
    <td>38.5 &amp; 35.1 / -</td>
  </tr>
  <tr>
    <td rowspan="2">Fast R-CNN</td>
    <td>1x</td>
    <td>36.4</td>
    <td>-</td>
    <td>35.8 / 36.6</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>36.8</td>
    <td>-</td>
    <td>37.1 / -</td>
  </tr>
  <tr>
    <td rowspan="2">Fast R-CNN (w/mask)</td>
    <td>1x</td>
    <td>37.3 &amp; 33.7</td>
    <td>-</td>
    <td>36.8 &amp; 34.1 / 37.3 &amp; 34.5</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>37.7 &amp; 34.0</td>
    <td>-</td>
    <td>37.9 &amp; 34.8 / -</td>
  </tr>
</table>

### Training Speed

The training speed is measure with s/iter. The lower, the better.

<table>
  <tr>
    <th>Type</th>
    <th>Detectron (P100<sup>1</sup>)</th>
    <th>maskrcnn-benchmark (V100)</th>
    <th>mmdetection (V100<sup>2</sup>)</th>
  </tr>
  <tr>
    <td>RPN</td>
    <td>0.416</td>
    <td>-</td>
    <td>0.253</td>
  </tr>
  <tr>
    <td>Faster R-CNN</td>
    <td>0.544</td>
    <td>0.353</td>
    <td>0.333</td>
  </tr>
  <tr>
    <td>Mask R-CNN</td>
    <td>0.889</td>
    <td>0.454</td>
    <td>0.430</td>
  </tr>
  <tr>
    <td>Fast R-CNN</td>
    <td>0.285</td>
    <td>-</td>
    <td>0.242</td>
  </tr>
  <tr>
    <td>Fast R-CNN (w/mask)</td>
    <td>0.377</td>
    <td>-</td>
    <td>0.328</td>
  </tr>
</table>

\*1. Facebook's Big Basin servers (P100/V100) is slightly faster than the servers we use. mmdetection can also run slightly faster on FB's servers.

\*2. For fair comparison, we list the caffe-style results here.


### Inference Speed

The inference speed is measured with fps (img/s) on a single GPU. The higher, the better.

<table>
  <tr>
    <th>Type</th>
    <th>Detectron (P100)</th>
    <th>maskrcnn-benchmark (V100)</th>
    <th>mmdetection (V100)</th>
  </tr>
  <tr>
    <td>RPN</td>
    <td>12.5</td>
    <td>-</td>
    <td>16.9</td>
  </tr>
  <tr>
    <td>Faster R-CNN</td>
    <td>10.3</td>
    <td>7.9</td>
    <td>13.5</td>
  </tr>
  <tr>
    <td>Mask R-CNN</td>
    <td>8.5</td>
    <td>7.7</td>
    <td>10.2</td>
  </tr>
  <tr>
    <td>Fast R-CNN</td>
    <td>12.5</td>
    <td>-</td>
    <td>18.4</td>
  </tr>
  <tr>
    <td>Fast R-CNN (w/mask)</td>
    <td>9.9</td>
    <td>-</td>
    <td>12.8</td>
  </tr>
</table>

### Training memory

<table>
  <tr>
    <th>Type</th>
    <th>Detectron</th>
    <th>maskrcnn-benchmark</th>
    <th>mmdetection</th>
  </tr>
  <tr>
    <td>RPN</td>
    <td>6.4</td>
    <td>-</td>
    <td>3.3</td>
  </tr>
  <tr>
    <td>Faster R-CNN</td>
    <td>7.2</td>
    <td>4.4</td>
    <td>3.6</td>
  </tr>
  <tr>
    <td>Mask R-CNN</td>
    <td>8.6</td>
    <td>5.2</td>
    <td>3.8</td>
  </tr>
  <tr>
    <td>Fast R-CNN</td>
    <td>6.0</td>
    <td>-</td>
    <td>3.3</td>
  </tr>
  <tr>
    <td>Fast R-CNN (w/mask)</td>
    <td>7.9</td>
    <td>-</td>
    <td>3.4</td>
  </tr>
</table>

There is no doubt that maskrcnn-benchmark and mmdetection is more memory efficient than Detectron,
and the main advantage is PyTorch itself. We also perform some memory optimizations to push it forward.

Note that Caffe2 and PyTorch have different apis to obtain memory usage with different implementations.
For all codebases, `nvidia-smi` shows a larger memory usage than the reported number in the above table.