GETTING_STARTED.md 17.5 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
# Getting Started

This page provides basic tutorials about the usage of MMDetection.
For installation instructions, please see [INSTALL.md](INSTALL.md).

## Inference with pretrained models

We provide testing scripts to evaluate a whole dataset (COCO, PASCAL VOC, Cityscapes, etc.),
and also some high-level apis for easier integration to other projects.

### Test a dataset

- [x] single GPU testing
- [x] multiple GPU testing
- [x] visualize detection results

You can use the following commands to test a dataset.

```shell
# single-gpu testing
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}] [--show]

# multi-gpu testing
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--out ${RESULT_FILE}] [--eval ${EVAL_METRICS}]
```

Optional arguments:
- `RESULT_FILE`: Filename of the output results in pickle format. If not specified, the results will not be saved to a file.
- `EVAL_METRICS`: Items to be evaluated on the results. Allowed values depend on the dataset, e.g., `proposal_fast`, `proposal`, `bbox`, `segm` are available for COCO, `mAP`, `recall` for PASCAL VOC. Cityscapes could be evaluated by `cityscapes` as well as all COCO metrics.
- `--show`: If specified, detection results will be plotted on the images and shown in a new window. It is only applicable to single GPU testing and used for debugging and visualization. Please make sure that GUI is available in your environment, otherwise you may encounter the error like `cannot connect to X server`.

If you would like to evaluate the dataset, do not specify `--show` at the same time.

Examples:

Assume that you have already downloaded the checkpoints to the directory `checkpoints/`.

1. Test Faster R-CNN and visualize the results. Press any key for the next image.

```shell
python tools/test.py configs/faster_rcnn_r50_fpn_1x.py \
    checkpoints/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth \
    --show
```

2. Test Faster R-CNN on PASCAL VOC (without saving the test results) and evaluate the mAP.

```shell
python tools/test.py configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc.py \
    checkpoints/SOME_CHECKPOINT.pth \
    --eval mAP
```

3. Test Mask R-CNN with 8 GPUs, and evaluate the bbox and mask AP.

```shell
./tools/dist_test.sh configs/mask_rcnn_r50_fpn_1x.py \
    checkpoints/mask_rcnn_r50_fpn_1x_20181010-069fa190.pth \
    8 --out results.pkl --eval bbox segm
```

4. Test Mask R-CNN on COCO test-dev with 8 GPUs, and generate the json file to be submit to the official evaluation server.

```shell
./tools/dist_test.sh configs/mask_rcnn_r50_fpn_1x.py \
    checkpoints/mask_rcnn_r50_fpn_1x_20181010-069fa190.pth \
    8 --format-only --options "jsonfile_prefix=./mask_rcnn_test-dev_results"
```

You will get two json files `mask_rcnn_test-dev_results.bbox.json` and `mask_rcnn_test-dev_results.segm.json`.

5. Test Mask R-CNN on Cityscapes test with 8 GPUs, and generate the txt and png files to be submit to the official evaluation server.

```shell
./tools/dist_test.sh configs/cityscapes/mask_rcnn_r50_fpn_1x_cityscapes.py \
    checkpoints/mask_rcnn_r50_fpn_1x_cityscapes_20200227-afe51d5a.pth \
    8  --format_only --options "outfile_prefix=./mask_rcnn_cityscapes_test_results"
```

The generated png and txt would be under `./mask_rcnn_cityscapes_test_results` directory.

### Webcam demo

We provide a webcam demo to illustrate the results.

```shell
python demo/webcam_demo.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--device ${GPU_ID}] [--camera-id ${CAMERA-ID}] [--score-thr ${SCORE_THR}]
```

Examples:

```shell
python demo/webcam_demo.py configs/faster_rcnn_r50_fpn_1x.py \
    checkpoints/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth
```

### High-level APIs for testing images

#### Synchronous interface
Here is an example of building the model and test given images.

```python
from mmdet.apis import init_detector, inference_detector, show_result
import mmcv

config_file = 'configs/faster_rcnn_r50_fpn_1x.py'
checkpoint_file = 'checkpoints/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth'

# build the model from a config file and a checkpoint file
model = init_detector(config_file, checkpoint_file, device='cuda:0')

# test a single image and show the results
img = 'test.jpg'  # or img = mmcv.imread(img), which will only load it once
result = inference_detector(model, img)
# visualize the results in a new window
show_result(img, result, model.CLASSES)
# or save the visualization results to image files
show_result(img, result, model.CLASSES, out_file='result.jpg')

# test a video and show the results
video = mmcv.VideoReader('video.mp4')
for frame in video:
    result = inference_detector(model, frame)
    show_result(frame, result, model.CLASSES, wait_time=1)
```

A notebook demo can be found in [demo/inference_demo.ipynb](https://github.com/open-mmlab/mmdetection/blob/master/demo/inference_demo.ipynb).

#### Asynchronous interface - supported for Python 3.7+

Async interface allows not to block CPU on GPU bound inference code and enables better CPU/GPU utilization for single threaded application. Inference can be done concurrently either between different input data samples or between different models of some inference pipeline.

See `tests/async_benchmark.py` to compare the speed of synchronous and asynchronous interfaces.

```python
import asyncio
import torch
from mmdet.apis import init_detector, async_inference_detector, show_result
from mmdet.utils.contextmanagers import concurrent

async def main():
    config_file = 'configs/faster_rcnn_r50_fpn_1x.py'
    checkpoint_file = 'checkpoints/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth'
    device = 'cuda:0'
    model = init_detector(config_file, checkpoint=checkpoint_file, device=device)

    # queue is used for concurrent inference of multiple images
    streamqueue = asyncio.Queue()
    # queue size defines concurrency level
    streamqueue_size = 3

    for _ in range(streamqueue_size):
        streamqueue.put_nowait(torch.cuda.Stream(device=device))

    # test a single image and show the results
    img = 'test.jpg'  # or img = mmcv.imread(img), which will only load it once

    async with concurrent(streamqueue):
        result = await async_inference_detector(model, img)

    # visualize the results in a new window
    show_result(img, result, model.CLASSES)
    # or save the visualization results to image files
    show_result(img, result, model.CLASSES, out_file='result.jpg')


asyncio.run(main())

```


## Train a model

MMDetection implements distributed training and non-distributed training,
which uses `MMDistributedDataParallel` and `MMDataParallel` respectively.

All outputs (log files and checkpoints) will be saved to the working directory,
which is specified by `work_dir` in the config file.

By default we evaluate the model on the validation set after each epoch, you can change the evaluation interval by adding the interval argument in the training config.
```python
evaluation = dict(interval=12)  # This evaluate the model per 12 epoch.
```

**\*Important\***: The default learning rate in config files is for 8 GPUs and 2 img/gpu (batch size = 8*2 = 16).
According to the [Linear Scaling Rule](https://arxiv.org/abs/1706.02677), you need to set the learning rate proportional to the batch size if you use different GPUs or images per GPU, e.g., lr=0.01 for 4 GPUs * 2 img/gpu and lr=0.08 for 16 GPUs * 4 img/gpu.

### Train with a single GPU

```shell
python tools/train.py ${CONFIG_FILE}
```

If you want to specify the working directory in the command, you can add an argument `--work_dir ${YOUR_WORK_DIR}`.

### Train with multiple GPUs

```shell
./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]
```

Optional arguments are:

- `--validate` (**strongly recommended**): Perform evaluation at every k (default value is 1, which can be modified like [this](https://github.com/open-mmlab/mmdetection/blob/master/configs/mask_rcnn_r50_fpn_1x.py#L174)) epochs during the training.
- `--work_dir ${WORK_DIR}`: Override the working directory specified in the config file.
- `--resume_from ${CHECKPOINT_FILE}`: Resume from a previous checkpoint file.

Difference between `resume_from` and `load_from`:
`resume_from` loads both the model weights and optimizer status, and the epoch is also inherited from the specified checkpoint. It is usually used for resuming the training process that is interrupted accidentally.
`load_from` only loads the model weights and the training epoch starts from 0. It is usually used for finetuning.

### Train with multiple machines

If you run MMDetection on a cluster managed with [slurm](https://slurm.schedmd.com/), you can use the script `slurm_train.sh`. (This script also supports single machine training.)

```shell
./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR} [${GPUS}]
```

Here is an example of using 16 GPUs to train Mask R-CNN on the dev partition.

```shell
./tools/slurm_train.sh dev mask_r50_1x configs/mask_rcnn_r50_fpn_1x.py /nfs/xxxx/mask_rcnn_r50_fpn_1x 16
```

You can check [slurm_train.sh](https://github.com/open-mmlab/mmdetection/blob/master/tools/slurm_train.sh) for full arguments and environment variables.

If you have just multiple machines connected with ethernet, you can refer to
pytorch [launch utility](https://pytorch.org/docs/stable/distributed_deprecated.html#launch-utility).
Usually it is slow if you do not have high speed networking like infiniband.

### Launch multiple jobs on a single machine

If you launch multiple jobs on a single machine, e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs,
you need to specify different ports (29500 by default) for each job to avoid communication conflict.

If you use `dist_train.sh` to launch training jobs, you can set the port in commands.

```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh ${CONFIG_FILE} 4
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh ${CONFIG_FILE} 4
```

If you use launch training jobs with slurm, you need to modify the config files (usually the 6th line from the bottom in config files) to set different communication ports.

In `config1.py`,
```python
dist_params = dict(backend='nccl', port=29500)
```

In `config2.py`,
```python
dist_params = dict(backend='nccl', port=29501)
```

Then you can launch two jobs with `config1.py` ang `config2.py`.

```shell
CUDA_VISIBLE_DEVICES=0,1,2,3 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config1.py ${WORK_DIR} 4
CUDA_VISIBLE_DEVICES=4,5,6,7 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} config2.py ${WORK_DIR} 4
```

## Useful tools

We provide lots of useful tools under `tools/` directory.

### Analyze logs

You can plot loss/mAP curves given a training log file. Run `pip install seaborn` first to install the dependency.

![loss curve image](../demo/loss_curve.png)

```shell
python tools/analyze_logs.py plot_curve [--keys ${KEYS}] [--title ${TITLE}] [--legend ${LEGEND}] [--backend ${BACKEND}] [--style ${STYLE}] [--out ${OUT_FILE}]
```

Examples:

- Plot the classification loss of some run.

```shell
python tools/analyze_logs.py plot_curve log.json --keys loss_cls --legend loss_cls
```

- Plot the classification and regression loss of some run, and save the figure to a pdf.

```shell
python tools/analyze_logs.py plot_curve log.json --keys loss_cls loss_reg --out losses.pdf
```

- Compare the bbox mAP of two runs in the same figure.

```shell
python tools/analyze_logs.py plot_curve log1.json log2.json --keys bbox_mAP --legend run1 run2
```

You can also compute the average training speed.

```shell
python tools/analyze_logs.py cal_train_time ${CONFIG_FILE} [--include-outliers]
```

The output is expected to be like the following.

```
-----Analyze train time of work_dirs/some_exp/20190611_192040.log.json-----
slowest epoch 11, average time is 1.2024
fastest epoch 1, average time is 1.1909
time std over epochs is 0.0028
average iter time: 1.1959 s/iter

```

### Get the FLOPs and params (experimental)

We provide a script adapted from [flops-counter.pytorch](https://github.com/sovrasov/flops-counter.pytorch) to compute the FLOPs and params of a given model.

```shell
python tools/get_flops.py ${CONFIG_FILE} [--shape ${INPUT_SHAPE}]
```

You will get the result like this.

```
==============================
Input shape: (3, 1280, 800)
Flops: 239.32 GMac
Params: 37.74 M
==============================
```

**Note**: This tool is still experimental and we do not guarantee that the number is correct. You may well use the result for simple comparisons, but double check it before you adopt it in technical reports or papers.

(1) FLOPs are related to the input shape while parameters are not. The default input shape is (1, 3, 1280, 800).
(2) Some operators are not counted into FLOPs like GN and custom operators.
You can add support for new operators by modifying [`mmdet/utils/flops_counter.py`](https://github.com/open-mmlab/mmdetection/blob/master/mmdet/utils/flops_counter.py).
(3) The FLOPs of two-stage detectors is dependent on the number of proposals.

### Publish a model

Before you upload a model to AWS, you may want to
(1) convert model weights to CPU tensors, (2) delete the optimizer states and
(3) compute the hash of the checkpoint file and append the hash id to the filename.

```shell
python tools/publish_model.py ${INPUT_FILENAME} ${OUTPUT_FILENAME}
```

E.g.,

```shell
python tools/publish_model.py work_dirs/faster_rcnn/latest.pth faster_rcnn_r50_fpn_1x_20190801.pth
```

The final output filename will be `faster_rcnn_r50_fpn_1x_20190801-{hash id}.pth`.

### Test the robustness of detectors

Please refer to [ROBUSTNESS_BENCHMARKING.md](ROBUSTNESS_BENCHMARKING.md).


## How-to

### Use my own datasets

The simplest way is to convert your dataset to existing dataset formats (COCO or PASCAL VOC).

Here we show an example of adding a custom dataset of 5 classes, assuming it is also in COCO format.

In `mmdet/datasets/my_dataset.py`:

```python
from .coco import CocoDataset
from .registry import DATASETS


@DATASETS.register_module
class MyDataset(CocoDataset):

    CLASSES = ('a', 'b', 'c', 'd', 'e')
```

In `mmdet/datasets/__init__.py`:

```python
from .my_dataset import MyDataset
```

Then you can use `MyDataset` in config files, with the same API as CocoDataset.


It is also fine if you do not want to convert the annotation format to COCO or PASCAL format.
Actually, we define a simple annotation format and all existing datasets are
processed to be compatible with it, either online or offline.

The annotation of a dataset is a list of dict, each dict corresponds to an image.
There are 3 field `filename` (relative path), `width`, `height` for testing,
and an additional field `ann` for training. `ann` is also a dict containing at least 2 fields:
`bboxes` and `labels`, both of which are numpy arrays. Some datasets may provide
annotations like crowd/difficult/ignored bboxes, we use `bboxes_ignore` and `labels_ignore`
to cover them.

Here is an example.
```
[
    {
        'filename': 'a.jpg',
        'width': 1280,
        'height': 720,
        'ann': {
            'bboxes': <np.ndarray, float32> (n, 4),
            'labels': <np.ndarray, int64> (n, ),
            'bboxes_ignore': <np.ndarray, float32> (k, 4),
            'labels_ignore': <np.ndarray, int64> (k, ) (optional field)
        }
    },
    ...
]
```

There are two ways to work with custom datasets.

- online conversion

  You can write a new Dataset class inherited from `CustomDataset`, and overwrite two methods
  `load_annotations(self, ann_file)` and `get_ann_info(self, idx)`,
  like [CocoDataset](https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/coco.py) and [VOCDataset](https://github.com/open-mmlab/mmdetection/blob/master/mmdet/datasets/voc.py).

- offline conversion

  You can convert the annotation format to the expected format above and save it to
  a pickle or json file, like [pascal_voc.py](https://github.com/open-mmlab/mmdetection/blob/master/tools/convert_datasets/pascal_voc.py).
  Then you can simply use `CustomDataset`.

### Customize optimizer

An example of customized optimizer `CopyOfSGD` is defined in `mmdet/core/optimizer/copy_of_sgd.py`.
More generally, a customized optimizer could be defined as following.

In `mmdet/core/optimizer/my_optimizer.py`:

```python
from .registry import OPTIMIZERS
from torch.optim import Optimizer


@OPTIMIZERS.register_module
class MyOptimizer(Optimizer):

```

In `mmdet/core/optimizer/__init__.py`:

```python
from .my_optimizer import MyOptimizer
```

Then you can use `MyOptimizer` in `optimizer` field of config files.

### Develop new components

We basically categorize model components into 4 types.

- backbone: usually an FCN network to extract feature maps, e.g., ResNet, MobileNet.
- neck: the component between backbones and heads, e.g., FPN, PAFPN.
- head: the component for specific tasks, e.g., bbox prediction and mask prediction.
- roi extractor: the part for extracting RoI features from feature maps, e.g., RoI Align.

Here we show how to develop new components with an example of MobileNet.

1. Create a new file `mmdet/models/backbones/mobilenet.py`.

```python
import torch.nn as nn

from ..registry import BACKBONES


@BACKBONES.register_module
class MobileNet(nn.Module):

    def __init__(self, arg1, arg2):
        pass

    def forward(self, x):  # should return a tuple
        pass

    def init_weights(self, pretrained=None):
        pass
```

2. Import the module in `mmdet/models/backbones/__init__.py`.

```python
from .mobilenet import MobileNet
```

3. Use it in your config file.

```python
model = dict(
    ...
    backbone=dict(
        type='MobileNet',
        arg1=xxx,
        arg2=xxx),
    ...
```

For more information on how it works, you can refer to [TECHNICAL_DETAILS.md](TECHNICAL_DETAILS.md) (TODO).