train.py 5.68 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
from __future__ import division
zhangwenwei's avatar
zhangwenwei committed
2

zhangwenwei's avatar
zhangwenwei committed
3
4
import argparse
import copy
5
import logging
zhangwenwei's avatar
zhangwenwei committed
6
import mmcv
zhangwenwei's avatar
zhangwenwei committed
7
8
9
import os
import time
import torch
zww's avatar
zww committed
10
from mmcv import Config, DictAction
zhangwenwei's avatar
zhangwenwei committed
11
from mmcv.runner import init_dist
zhangwenwei's avatar
zhangwenwei committed
12
from os import path as osp
zhangwenwei's avatar
zhangwenwei committed
13
14
15
16

from mmdet3d import __version__
from mmdet3d.datasets import build_dataset
from mmdet3d.models import build_detector
zhangwenwei's avatar
zhangwenwei committed
17
from mmdet3d.utils import collect_env, get_root_logger
zhangwenwei's avatar
zhangwenwei committed
18
from mmdet.apis import set_random_seed, train_detector
zhangwenwei's avatar
zhangwenwei committed
19
20
21
22
23


def parse_args():
    parser = argparse.ArgumentParser(description='Train a detector')
    parser.add_argument('config', help='train config file path')
zhangwenwei's avatar
zhangwenwei committed
24
    parser.add_argument('--work-dir', help='the dir to save logs and models')
zhangwenwei's avatar
zhangwenwei committed
25
    parser.add_argument(
zhangwenwei's avatar
zhangwenwei committed
26
        '--resume-from', help='the checkpoint file to resume from')
zhangwenwei's avatar
zhangwenwei committed
27
    parser.add_argument(
zww's avatar
zww committed
28
        '--no-validate',
zhangwenwei's avatar
zhangwenwei committed
29
        action='store_true',
zww's avatar
zww committed
30
        help='whether not to evaluate the checkpoint during training')
31
32
    group_gpus = parser.add_mutually_exclusive_group()
    group_gpus.add_argument(
zhangwenwei's avatar
zhangwenwei committed
33
34
35
36
        '--gpus',
        type=int,
        help='number of gpus to use '
        '(only applicable to non-distributed training)')
37
38
39
40
41
42
    group_gpus.add_argument(
        '--gpu-ids',
        type=int,
        nargs='+',
        help='ids of gpus to use '
        '(only applicable to non-distributed training)')
zhangwenwei's avatar
zhangwenwei committed
43
44
45
46
47
    parser.add_argument('--seed', type=int, default=0, help='random seed')
    parser.add_argument(
        '--deterministic',
        action='store_true',
        help='whether to set deterministic options for CUDNN backend.')
zww's avatar
zww committed
48
49
    parser.add_argument(
        '--options', nargs='+', action=DictAction, help='arguments in dict')
zhangwenwei's avatar
zhangwenwei committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    parser.add_argument(
        '--autoscale-lr',
        action='store_true',
        help='automatically scale lr with the number of gpus')
    args = parser.parse_args()
    if 'LOCAL_RANK' not in os.environ:
        os.environ['LOCAL_RANK'] = str(args.local_rank)

    return args


def main():
    args = parse_args()

    cfg = Config.fromfile(args.config)
zww's avatar
zww committed
71
72
73
    if args.options is not None:
        cfg.merge_from_dict(args.options)

zhangwenwei's avatar
zhangwenwei committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True

    # work_dir is determined in this priority: CLI > segment in file > filename
    if args.work_dir is not None:
        # update configs according to CLI args if args.work_dir is not None
        cfg.work_dir = args.work_dir
    elif cfg.get('work_dir', None) is None:
        # use config filename as default work_dir if cfg.work_dir is None
        cfg.work_dir = osp.join('./work_dirs',
                                osp.splitext(osp.basename(args.config))[0])
    if args.resume_from is not None:
        cfg.resume_from = args.resume_from
88
89
90
91
    if args.gpu_ids is not None:
        cfg.gpu_ids = args.gpu_ids
    else:
        cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus)
zhangwenwei's avatar
zhangwenwei committed
92
93
94

    if args.autoscale_lr:
        # apply the linear scaling rule (https://arxiv.org/abs/1706.02677)
95
        cfg.optimizer['lr'] = cfg.optimizer['lr'] * len(cfg.gpu_ids) / 8
zhangwenwei's avatar
zhangwenwei committed
96
97
98
99
100
101
102
103
104
105
106
107

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # create work_dir
    mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
    # init the logger before other steps
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
zww's avatar
zww committed
108
    log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
zhangwenwei's avatar
zhangwenwei committed
109
110
    logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)

111
112
113
114
    # add a logging filter
    logging_filter = logging.Filter('mmdet')
    logging_filter.filter = lambda record: record.find('mmdet') != -1

zhangwenwei's avatar
zhangwenwei committed
115
116
117
118
119
    # init the meta dict to record some important information such as
    # environment info and seed, which will be logged
    meta = dict()
    # log env info
    env_info_dict = collect_env()
zww's avatar
zww committed
120
    env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()])
zhangwenwei's avatar
zhangwenwei committed
121
122
123
124
125
126
    dash_line = '-' * 60 + '\n'
    logger.info('Environment info:\n' + dash_line + env_info + '\n' +
                dash_line)
    meta['env_info'] = env_info

    # log some basic info
zww's avatar
zww committed
127
128
    logger.info(f'Distributed training: {distributed}')
    logger.info(f'Config:\n{cfg.pretty_text}')
zhangwenwei's avatar
zhangwenwei committed
129
130
131

    # set random seeds
    if args.seed is not None:
zww's avatar
zww committed
132
133
        logger.info(f'Set random seed to {args.seed}, '
                    f'deterministic: {args.deterministic}')
zhangwenwei's avatar
zhangwenwei committed
134
135
136
137
138
139
        set_random_seed(args.seed, deterministic=args.deterministic)
    cfg.seed = args.seed
    meta['seed'] = args.seed

    model = build_detector(
        cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
zww's avatar
zww committed
140
    logger.info(f'Model:\n{model}')
zhangwenwei's avatar
zhangwenwei committed
141
142
143
144
145
146
147
148
149
150
    datasets = [build_dataset(cfg.data.train)]
    if len(cfg.workflow) == 2:
        val_dataset = copy.deepcopy(cfg.data.val)
        val_dataset.pipeline = cfg.data.train.pipeline
        datasets.append(build_dataset(val_dataset))
    if cfg.checkpoint_config is not None:
        # save mmdet version, config file content and class names in
        # checkpoints as meta data
        cfg.checkpoint_config.meta = dict(
            mmdet_version=__version__,
zww's avatar
zww committed
151
            config=cfg.pretty_text,
zhangwenwei's avatar
zhangwenwei committed
152
153
154
155
156
157
158
159
            CLASSES=datasets[0].CLASSES)
    # add an attribute for visualization convenience
    model.CLASSES = datasets[0].CLASSES
    train_detector(
        model,
        datasets,
        cfg,
        distributed=distributed,
zww's avatar
zww committed
160
        validate=(not args.no_validate),
zhangwenwei's avatar
zhangwenwei committed
161
162
163
164
165
166
        timestamp=timestamp,
        meta=meta)


if __name__ == '__main__':
    main()