point_sa_module.py 6.17 KB
Newer Older
wuyuefeng's avatar
wuyuefeng committed
1
2
import torch
from mmcv.cnn import ConvModule
zhangwenwei's avatar
zhangwenwei committed
3
4
5
from torch import nn as nn
from torch.nn import functional as F
from typing import List
wuyuefeng's avatar
wuyuefeng committed
6
7
8
9
10
11

from mmdet3d.ops import (GroupAll, QueryAndGroup, furthest_point_sample,
                         gather_points)


class PointSAModuleMSG(nn.Module):
zhangwenwei's avatar
zhangwenwei committed
12
13
    """Point set abstraction module with multi-scale grouping used in
    Pointnets.
wuyuefeng's avatar
wuyuefeng committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

    Args:
        num_point (int): Number of points.
        radii (list[float]): List of radius in each ball query.
        sample_nums (list[int]): Number of samples in each ball query.
        mlp_channels (list[int]): Specify of the pointnet before
            the global pooling for each scale.
        norm_cfg (dict): Type of normalization method.
            Default: dict(type='BN2d').
        use_xyz (bool): Whether to use xyz.
            Default: True.
        pool_mod (str): Type of pooling method.
            Default: 'max_pool'.
        normalize_xyz (bool): Whether to normalize local XYZ with radius.
            Default: False.
    """

    def __init__(self,
                 num_point: int,
                 radii: List[float],
                 sample_nums: List[int],
                 mlp_channels: List[List[int]],
                 norm_cfg: dict = dict(type='BN2d'),
                 use_xyz: bool = True,
                 pool_mod='max',
                 normalize_xyz: bool = False):
        super().__init__()

        assert len(radii) == len(sample_nums) == len(mlp_channels)
        assert pool_mod in ['max', 'avg']

        self.num_point = num_point
        self.pool_mod = pool_mod
        self.groupers = nn.ModuleList()
        self.mlps = nn.ModuleList()

        for i in range(len(radii)):
            radius = radii[i]
            sample_num = sample_nums[i]
            if num_point is not None:
                grouper = QueryAndGroup(
                    radius,
                    sample_num,
                    use_xyz=use_xyz,
                    normalize_xyz=normalize_xyz)
            else:
                grouper = GroupAll(use_xyz)
            self.groupers.append(grouper)

            mlp_spec = mlp_channels[i]
            if use_xyz:
                mlp_spec[0] += 3

            mlp = nn.Sequential()
            for i in range(len(mlp_spec) - 1):
                mlp.add_module(
                    f'layer{i}',
                    ConvModule(
                        mlp_spec[i],
                        mlp_spec[i + 1],
                        kernel_size=(1, 1),
                        stride=(1, 1),
                        conv_cfg=dict(type='Conv2d'),
                        norm_cfg=norm_cfg))
            self.mlps.append(mlp)

    def forward(
        self,
        points_xyz: torch.Tensor,
        features: torch.Tensor = None,
        indices: torch.Tensor = None
    ) -> (torch.Tensor, torch.Tensor, torch.Tensor):
        """forward.

        Args:
            points_xyz (Tensor): (B, N, 3) xyz coordinates of the features.
            features (Tensor): (B, C, N) features of each point.
                Default: None.
            indices (Tensor): (B, num_point) Index of the features.
                Default: None.

        Returns:
            Tensor: (B, M, 3) where M is the number of points.
                New features xyz.
            Tensor: (B, M, sum_k(mlps[k][-1])) where M is the number
                of points. New feature descriptors.
            Tensor: (B, M) where M is the number of points.
                Index of the features.
        """
        new_features_list = []

        xyz_flipped = points_xyz.transpose(1, 2).contiguous()
        if indices is None:
            indices = furthest_point_sample(points_xyz, self.num_point)
        else:
            assert (indices.shape[1] == self.num_point)

        new_xyz = gather_points(xyz_flipped, indices).transpose(
            1, 2).contiguous() if self.num_point is not None else None

        for i in range(len(self.groupers)):
            # (B, C, num_point, nsample)
            new_features = self.groupers[i](points_xyz, new_xyz, features)

            # (B, mlp[-1], num_point, nsample)
            new_features = self.mlps[i](new_features)
            if self.pool_mod == 'max':
                # (B, mlp[-1], num_point, 1)
                new_features = F.max_pool2d(
                    new_features, kernel_size=[1, new_features.size(3)])
            elif self.pool_mod == 'avg':
                # (B, mlp[-1], num_point, 1)
                new_features = F.avg_pool2d(
                    new_features, kernel_size=[1, new_features.size(3)])
            else:
                raise NotImplementedError

            new_features = new_features.squeeze(-1)  # (B, mlp[-1], num_point)
            new_features_list.append(new_features)

        return new_xyz, torch.cat(new_features_list, dim=1), indices


class PointSAModule(PointSAModuleMSG):
    """Point set abstraction module used in Pointnets.

    Args:
        mlp_channels (list[int]): Specify of the pointnet before
            the global pooling for each scale.
        num_point (int): Number of points.
            Default: None.
        radius (float): Radius to group with.
            Default: None.
        num_sample (int): Number of samples in each ball query.
            Default: None.
        norm_cfg (dict): Type of normalization method.
            Default: dict(type='BN2d').
        use_xyz (bool): Whether to use xyz.
            Default: True.
        pool_mod (str): Type of pooling method.
            Default: 'max_pool'.
        normalize_xyz (bool): Whether to normalize local XYZ with radius.
            Default: False.
    """

    def __init__(self,
                 mlp_channels: List[int],
                 num_point: int = None,
                 radius: float = None,
                 num_sample: int = None,
                 norm_cfg: dict = dict(type='BN2d'),
                 use_xyz: bool = True,
                 pool_mod: str = 'max',
                 normalize_xyz: bool = False):
        super().__init__(
            mlp_channels=[mlp_channels],
            num_point=num_point,
            radii=[radius],
            sample_nums=[num_sample],
            norm_cfg=norm_cfg,
            use_xyz=use_xyz,
            pool_mod=pool_mod,
            normalize_xyz=normalize_xyz)