dbsampler.py 8.08 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
import copy
zhangwenwei's avatar
zhangwenwei committed
2
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import os
import pickle

from mmdet3d.core.bbox import box_np_ops
from mmdet3d.datasets.pipelines import data_augment_utils
from ..registry import OBJECTSAMPLERS


class BatchSampler:

    def __init__(self,
                 sampled_list,
                 name=None,
                 epoch=None,
                 shuffle=True,
                 drop_reminder=False):
        self._sampled_list = sampled_list
        self._indices = np.arange(len(sampled_list))
        if shuffle:
            np.random.shuffle(self._indices)
        self._idx = 0
        self._example_num = len(sampled_list)
        self._name = name
        self._shuffle = shuffle
        self._epoch = epoch
        self._epoch_counter = 0
        self._drop_reminder = drop_reminder

    def _sample(self, num):
        if self._idx + num >= self._example_num:
            ret = self._indices[self._idx:].copy()
            self._reset()
        else:
            ret = self._indices[self._idx:self._idx + num]
            self._idx += num
        return ret

    def _reset(self):
        assert self._name is not None
        # print("reset", self._name)
        if self._shuffle:
            np.random.shuffle(self._indices)
        self._idx = 0

    def sample(self, num):
        indices = self._sample(num)
        return [self._sampled_list[i] for i in indices]


52
@OBJECTSAMPLERS.register_module()
zhangwenwei's avatar
zhangwenwei committed
53
54
class DataBaseSampler(object):

zhangwenwei's avatar
zhangwenwei committed
55
56
57
58
59
60
61
    def __init__(self,
                 info_path,
                 data_root,
                 rate,
                 prepare,
                 sample_groups,
                 classes=None):
zhangwenwei's avatar
zhangwenwei committed
62
        super().__init__()
zhangwenwei's avatar
zhangwenwei committed
63
        self.data_root = data_root
zhangwenwei's avatar
zhangwenwei committed
64
65
66
        self.info_path = info_path
        self.rate = rate
        self.prepare = prepare
zhangwenwei's avatar
zhangwenwei committed
67
68
69
        self.classes = classes
        self.cat2label = {name: i for i, name in enumerate(classes)}
        self.label2cat = {i: name for i, name in enumerate(classes)}
zhangwenwei's avatar
zhangwenwei committed
70
71
72
73
74

        with open(info_path, 'rb') as f:
            db_infos = pickle.load(f)

        # filter database infos
zhangwenwei's avatar
zhangwenwei committed
75
        from mmdet3d.utils import get_root_logger
zhangwenwei's avatar
zhangwenwei committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        logger = get_root_logger()
        for k, v in db_infos.items():
            logger.info(f'load {len(v)} {k} database infos')
        for prep_func, val in prepare.items():
            db_infos = getattr(self, prep_func)(db_infos, val)
        logger.info('After filter database:')
        for k, v in db_infos.items():
            logger.info(f'load {len(v)} {k} database infos')

        self.db_infos = db_infos

        # load sample groups
        # TODO: more elegant way to load sample groups
        self.sample_groups = []
        for name, num in sample_groups.items():
            self.sample_groups.append({name: int(num)})

        self.group_db_infos = self.db_infos  # just use db_infos
        self.sample_classes = []
        self.sample_max_nums = []
        for group_info in self.sample_groups:
            self.sample_classes += list(group_info.keys())
            self.sample_max_nums += list(group_info.values())

        self.sampler_dict = {}
        for k, v in self.group_db_infos.items():
            self.sampler_dict[k] = BatchSampler(v, k, shuffle=True)
        # TODO: No group_sampling currently

    @staticmethod
    def filter_by_difficulty(db_infos, removed_difficulty):
        new_db_infos = {}
        for key, dinfos in db_infos.items():
            new_db_infos[key] = [
                info for info in dinfos
                if info['difficulty'] not in removed_difficulty
            ]
        return new_db_infos

    @staticmethod
    def filter_by_min_points(db_infos, min_gt_points_dict):
        for name, min_num in min_gt_points_dict.items():
            min_num = int(min_num)
            if min_num > 0:
                filtered_infos = []
                for info in db_infos[name]:
                    if info['num_points_in_gt'] >= min_num:
                        filtered_infos.append(info)
                db_infos[name] = filtered_infos
        return db_infos

zhangwenwei's avatar
zhangwenwei committed
127
    def sample_all(self, gt_bboxes, gt_labels, img=None):
zhangwenwei's avatar
zhangwenwei committed
128
129
130
131
        sampled_num_dict = {}
        sample_num_per_class = []
        for class_name, max_sample_num in zip(self.sample_classes,
                                              self.sample_max_nums):
zhangwenwei's avatar
zhangwenwei committed
132
133
134
            class_label = self.cat2label[class_name]
            # sampled_num = int(max_sample_num -
            #                   np.sum([n == class_name for n in gt_names]))
zhangwenwei's avatar
zhangwenwei committed
135
            sampled_num = int(max_sample_num -
zhangwenwei's avatar
zhangwenwei committed
136
                              np.sum([n == class_label for n in gt_labels]))
zhangwenwei's avatar
zhangwenwei committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
            sampled_num = np.round(self.rate * sampled_num).astype(np.int64)
            sampled_num_dict[class_name] = sampled_num
            sample_num_per_class.append(sampled_num)

        sampled = []
        sampled_gt_bboxes = []
        avoid_coll_boxes = gt_bboxes

        for class_name, sampled_num in zip(self.sample_classes,
                                           sample_num_per_class):
            if sampled_num > 0:
                sampled_cls = self.sample_class_v2(class_name, sampled_num,
                                                   avoid_coll_boxes)

                sampled += sampled_cls
                if len(sampled_cls) > 0:
                    if len(sampled_cls) == 1:
                        sampled_gt_box = sampled_cls[0]['box3d_lidar'][
                            np.newaxis, ...]
                    else:
                        sampled_gt_box = np.stack(
                            [s['box3d_lidar'] for s in sampled_cls], axis=0)

                    sampled_gt_bboxes += [sampled_gt_box]
                    avoid_coll_boxes = np.concatenate(
                        [avoid_coll_boxes, sampled_gt_box], axis=0)

        ret = None
        if len(sampled) > 0:
            sampled_gt_bboxes = np.concatenate(sampled_gt_bboxes, axis=0)
            # center = sampled_gt_bboxes[:, 0:3]

zhangwenwei's avatar
zhangwenwei committed
169
            # num_sampled = len(sampled)
zhangwenwei's avatar
zhangwenwei committed
170
171
172
173
            s_points_list = []
            count = 0
            for info in sampled:
                file_path = os.path.join(
zhangwenwei's avatar
zhangwenwei committed
174
175
                    self.data_root,
                    info['path']) if self.data_root else info['path']
zhangwenwei's avatar
zhangwenwei committed
176
177
178
179
180
181
182
                s_points = np.fromfile(
                    file_path, dtype=np.float32).reshape([-1, 4])
                s_points[:, :3] += info['box3d_lidar'][:3]

                count += 1

                s_points_list.append(s_points)
zhangwenwei's avatar
zhangwenwei committed
183
184
185
            # gt_names = np.array([s['name'] for s in sampled]),
            # gt_labels = np.array([self.cat2label(s) for s in gt_names])
            gt_labels = np.array([self.cat2label[s['name']] for s in sampled])
zhangwenwei's avatar
zhangwenwei committed
186
            ret = {
zhangwenwei's avatar
zhangwenwei committed
187
188
                'gt_labels_3d':
                gt_labels,
zhangwenwei's avatar
zhangwenwei committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
                'gt_bboxes_3d':
                sampled_gt_bboxes,
                'points':
                np.concatenate(s_points_list, axis=0),
                'group_ids':
                np.arange(gt_bboxes.shape[0],
                          gt_bboxes.shape[0] + len(sampled))
            }

        return ret

    def sample_class_v2(self, name, num, gt_bboxes):
        sampled = self.sampler_dict[name].sample(num)
        sampled = copy.deepcopy(sampled)
        num_gt = gt_bboxes.shape[0]
        num_sampled = len(sampled)
        gt_bboxes_bv = box_np_ops.center_to_corner_box2d(
            gt_bboxes[:, 0:2], gt_bboxes[:, 3:5], gt_bboxes[:, 6])

        sp_boxes = np.stack([i['box3d_lidar'] for i in sampled], axis=0)
        boxes = np.concatenate([gt_bboxes, sp_boxes], axis=0).copy()

        sp_boxes_new = boxes[gt_bboxes.shape[0]:]
        sp_boxes_bv = box_np_ops.center_to_corner_box2d(
            sp_boxes_new[:, 0:2], sp_boxes_new[:, 3:5], sp_boxes_new[:, 6])

        total_bv = np.concatenate([gt_bboxes_bv, sp_boxes_bv], axis=0)
        coll_mat = data_augment_utils.box_collision_test(total_bv, total_bv)
        diag = np.arange(total_bv.shape[0])
        coll_mat[diag, diag] = False

        valid_samples = []
        for i in range(num_gt, num_gt + num_sampled):
            if coll_mat[i].any():
                coll_mat[i] = False
                coll_mat[:, i] = False
            else:
                valid_samples.append(sampled[i - num_gt])
        return valid_samples