lyft_dataset.py 18.1 KB
Newer Older
wangtai's avatar
wangtai committed
1
2
3
import mmcv
import numpy as np
import pandas as pd
zhangwenwei's avatar
zhangwenwei committed
4
import tempfile
wangtai's avatar
wangtai committed
5
6
from lyft_dataset_sdk.lyftdataset import LyftDataset as Lyft
from lyft_dataset_sdk.utils.data_classes import Box as LyftBox
zhangwenwei's avatar
zhangwenwei committed
7
from os import path as osp
wangtai's avatar
wangtai committed
8
9
10
11
12
13
14
15
16
17
from pyquaternion import Quaternion

from mmdet3d.core.evaluation.lyft_eval import lyft_eval
from mmdet.datasets import DATASETS
from ..core.bbox import LiDARInstance3DBoxes
from .custom_3d import Custom3DDataset


@DATASETS.register_module()
class LyftDataset(Custom3DDataset):
zhangwenwei's avatar
zhangwenwei committed
18
    """Lyft Dataset.
wangtai's avatar
wangtai committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

    This class serves as the API for experiments on the Lyft Dataset.

    Please refer to
    `<https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles
    /data>`_for data downloading. It is recommended to symlink the dataset
    root to $MMDETECTION3D/data and organize them as the doc shows.

    Args:
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        data_root (str): Path of dataset root.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        load_interval (int, optional): Interval of loading the dataset. It is
            used to uniformly sample the dataset. Defaults to 1.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'LiDAR' in this dataset. Available options includes

            - 'LiDAR': box in LiDAR coordinates
            - 'Depth': box in depth coordinates, usually for indoor dataset
            - 'Camera': box in camera coordinates
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
    """
    NameMapping = {
        'bicycle': 'bicycle',
        'bus': 'bus',
        'car': 'car',
        'emergency_vehicle': 'emergency_vehicle',
        'motorcycle': 'motorcycle',
        'other_vehicle': 'other_vehicle',
        'pedestrian': 'pedestrian',
        'truck': 'truck',
        'animal': 'animal'
    }
    DefaultAttribute = {
        'car': 'is_stationary',
        'truck': 'is_stationary',
        'bus': 'is_stationary',
        'emergency_vehicle': 'is_stationary',
        'other_vehicle': 'is_stationary',
        'motorcycle': 'is_stationary',
        'bicycle': 'is_stationary',
        'pedestrian': 'is_stationary',
        'animal': 'is_stationary'
    }
    CLASSES = ('car', 'truck', 'bus', 'emergency_vehicle', 'other_vehicle',
               'motorcycle', 'bicycle', 'pedestrian', 'animal')

    def __init__(self,
                 ann_file,
                 pipeline=None,
                 data_root=None,
                 classes=None,
                 load_interval=1,
                 modality=None,
                 box_type_3d='LiDAR',
                 filter_empty_gt=True,
                 test_mode=False):
        self.load_interval = load_interval
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
            test_mode=test_mode)

        if self.modality is None:
            self.modality = dict(
                use_camera=False,
                use_lidar=True,
                use_radar=False,
                use_map=False,
                use_external=False,
            )

    def load_annotations(self, ann_file):
        """Load annotations from ann_file.

        Args:
            ann_file (str): Path of the annotation file.

        Returns:
            list[dict]: List of annotations sorted by timestamps.
        """
        data = mmcv.load(ann_file)
        data_infos = list(sorted(data['infos'], key=lambda e: e['timestamp']))
        data_infos = data_infos[::self.load_interval]
        self.metadata = data['metadata']
        self.version = self.metadata['version']
        return data_infos

    def get_data_info(self, index):
        """Get data info according to the given index.

        Args:
            index (int): Index of the sample data to get.

        Returns:
            dict: Standard input_dict consists of the
                data information.

                - sample_idx (str): sample index
                - pts_filename (str): filename of point clouds
                - sweeps (list[dict]): infos of sweeps
                - timestamp (float): sample timestamp
                - img_filename (str, optional): image filename
                - lidar2img (list[np.ndarray], optional): transformations from
                    lidar to different cameras
                - ann_info (dict): annotation info
        """
        info = self.data_infos[index]

        # standard protocal modified from SECOND.Pytorch
        input_dict = dict(
            sample_idx=info['token'],
            pts_filename=info['lidar_path'],
            sweeps=info['sweeps'],
            timestamp=info['timestamp'] / 1e6,
        )

        if self.modality['use_camera']:
            image_paths = []
            lidar2img_rts = []
            for cam_type, cam_info in info['cams'].items():
                image_paths.append(cam_info['data_path'])
                # obtain lidar to image transformation matrix
                lidar2cam_r = np.linalg.inv(cam_info['sensor2lidar_rotation'])
                lidar2cam_t = cam_info[
                    'sensor2lidar_translation'] @ lidar2cam_r.T
                lidar2cam_rt = np.eye(4)
                lidar2cam_rt[:3, :3] = lidar2cam_r.T
                lidar2cam_rt[3, :3] = -lidar2cam_t
                intrinsic = cam_info['cam_intrinsic']
                viewpad = np.eye(4)
                viewpad[:intrinsic.shape[0], :intrinsic.shape[1]] = intrinsic
                lidar2img_rt = (viewpad @ lidar2cam_rt.T)
                lidar2img_rts.append(lidar2img_rt)

            input_dict.update(
                dict(
                    img_filename=image_paths,
                    lidar2img=lidar2img_rts,
                ))

        if not self.test_mode:
            annos = self.get_ann_info(index)
            input_dict['ann_info'] = annos

        return input_dict

    def get_ann_info(self, index):
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
            dict: Standard annotation dictionary
                consists of the data information.

                - gt_bboxes_3d (:obj:``LiDARInstance3DBoxes``):
                    3D ground truth bboxes
                - gt_labels_3d (np.ndarray): labels of ground truths
                - gt_names (list[str]): class names of ground truths
        """
        info = self.data_infos[index]
        gt_bboxes_3d = info['gt_boxes']
        gt_names_3d = info['gt_names']
        gt_labels_3d = []
        for cat in gt_names_3d:
            if cat in self.CLASSES:
                gt_labels_3d.append(self.CLASSES.index(cat))
            else:
                gt_labels_3d.append(-1)
        gt_labels_3d = np.array(gt_labels_3d)

        if 'gt_shape' in info:
            gt_shape = info['gt_shape']
            gt_bboxes_3d = np.concatenate([gt_bboxes_3d, gt_shape], axis=-1)

        # the lyft box center is [0.5, 0.5, 0.5], we change it to be
        # the same as KITTI (0.5, 0.5, 0)
        gt_bboxes_3d = LiDARInstance3DBoxes(
            gt_bboxes_3d,
            box_dim=gt_bboxes_3d.shape[-1],
            origin=(0.5, 0.5, 0.5)).convert_to(self.box_mode_3d)

        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
            gt_labels_3d=gt_labels_3d,
        )
        return anns_results

    def _format_bbox(self, results, jsonfile_prefix=None):
        """Convert the results to the standard format.

        Args:
            results (list[dict]): Testing results of the dataset.
            jsonfile_prefix (str): The prefix of the output jsonfile.
                You can specify the output directory/filename by
                modifying the jsonfile_prefix. Default: None.

        Returns:
            str: Path of the output json file.
        """
        lyft_annos = {}
        mapped_class_names = self.CLASSES

        print('Start to convert detection format...')
        for sample_id, det in enumerate(mmcv.track_iter_progress(results)):
            annos = []
            boxes = output_to_lyft_box(det)
            sample_token = self.data_infos[sample_id]['token']
            boxes = lidar_lyft_box_to_global(self.data_infos[sample_id], boxes)
            for i, box in enumerate(boxes):
                name = mapped_class_names[box.label]
                lyft_anno = dict(
                    sample_token=sample_token,
                    translation=box.center.tolist(),
                    size=box.wlh.tolist(),
                    rotation=box.orientation.elements.tolist(),
                    name=name,
                    score=box.score)
                annos.append(lyft_anno)
            lyft_annos[sample_token] = annos
        lyft_submissions = {
            'meta': self.modality,
            'results': lyft_annos,
        }

        mmcv.mkdir_or_exist(jsonfile_prefix)
        res_path = osp.join(jsonfile_prefix, 'results_lyft.json')
        print('Results writes to', res_path)
        mmcv.dump(lyft_submissions, res_path)
        return res_path

    def _evaluate_single(self,
                         result_path,
                         logger=None,
                         metric='bbox',
                         result_name='pts_bbox'):
        """Evaluation for a single model in Lyft protocol.

        Args:
            result_path (str): Path of the result file.
            logger (logging.Logger | str | None): Logger used for printing
                related information during evaluation. Default: None.
            metric (str): Metric name used for evaluation. Default: 'bbox'.
            result_name (str): Result name in the metric prefix.
                Default: 'pts_bbox'.

        Returns:
            dict: Dictionary of evaluation details.
        """

        output_dir = osp.join(*osp.split(result_path)[:-1])
        lyft = Lyft(
            data_path=osp.join(self.data_root, self.version),
            json_path=osp.join(self.data_root, self.version, self.version),
            verbose=True)
        eval_set_map = {
            'v1.01-train': 'val',
        }
        metrics = lyft_eval(lyft, self.data_root, result_path,
                            eval_set_map[self.version], output_dir, logger)

        # record metrics
        detail = dict()
        metric_prefix = f'{result_name}_Lyft'

        for i, name in enumerate(metrics['class_names']):
            AP = float("f{round(metrics['mAPs_cate'][i], 3)}")
            detail[f'{metric_prefix}/{name}_AP'] = AP

        detail[f'{metric_prefix}/mAP'] = metrics['Final mAP']
        return detail

    def format_results(self, results, jsonfile_prefix=None, csv_savepath=None):
        """Format the results to json (standard format for COCO evaluation).

        Args:
            results (list[dict]): Testing results of the dataset.
            jsonfile_prefix (str | None): The prefix of json files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.
            csv_savepath (str | None): The path for saving csv files.
                It includes the file path and the csv filename,
                e.g., "a/b/filename.csv". If not specified,
                the result will not be converted to csv file.

        Returns:
            tuple (dict, str): result_files is a dict containing the json
                filepaths, tmp_dir is the temporal directory created for
                saving json files when jsonfile_prefix is not specified.
        """
        assert isinstance(results, list), 'results must be a list'
        assert len(results) == len(self), (
            'The length of results is not equal to the dataset len: {} != {}'.
            format(len(results), len(self)))

        if jsonfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            jsonfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            tmp_dir = None

        if not isinstance(results[0], dict):
            result_files = self._format_bbox(results, jsonfile_prefix)
        else:
            result_files = dict()
            for name in results[0]:
                print(f'\nFormating bboxes of {name}')
                results_ = [out[name] for out in results]
                tmp_file_ = osp.join(jsonfile_prefix, name)
                result_files.update(
                    {name: self._format_bbox(results_, tmp_file_)})
        if csv_savepath is not None:
            self.json2csv(result_files['pts_bbox'], csv_savepath)
        return result_files, tmp_dir

    def evaluate(self,
                 results,
                 metric='bbox',
                 logger=None,
                 jsonfile_prefix=None,
                 csv_savepath=None,
                 result_names=['pts_bbox']):
        """Evaluation in Lyft protocol.

        Args:
            results (list[dict]): Testing results of the dataset.
            metric (str | list[str]): Metrics to be evaluated.
            logger (logging.Logger | str | None): Logger used for printing
                related information during evaluation. Default: None.
            jsonfile_prefix (str | None): The prefix of json files. It includes
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.
            csv_savepath (str | None): The path for saving csv files.
                It includes the file path and the csv filename,
                e.g., "a/b/filename.csv". If not specified,
                the result will not be converted to csv file.

        Returns:
            dict[str: float]
        """
        result_files, tmp_dir = self.format_results(results, jsonfile_prefix,
                                                    csv_savepath)

        if isinstance(result_files, dict):
            results_dict = dict()
            for name in result_names:
                print(f'Evaluating bboxes of {name}')
                ret_dict = self._evaluate_single(result_files[name])
            results_dict.update(ret_dict)
        elif isinstance(result_files, str):
            results_dict = self._evaluate_single(result_files)

        if tmp_dir is not None:
            tmp_dir.cleanup()
        return results_dict

    @staticmethod
    def json2csv(json_path, csv_savepath):
        """Convert the json file to csv format for submission.

        Args:
            json_path (str): Path of the result json file.
            csv_savepath (str): Path to save the csv file.
        """
        with open(json_path, 'r') as f:
            results = mmcv.load(f)['results']
        csv_nopred = 'data/lyft/sample_submission.csv'
        data = pd.read_csv(csv_nopred)
        Id_list = list(data['Id'])
        pred_list = list(data['PredictionString'])
        cnt = 0
        print('Converting the json to csv...')
        for token in results.keys():
            cnt += 1
            predictions = results[token]
            prediction_str = ''
            for i in range(len(predictions)):
                prediction_str += \
                    str(predictions[i]['score']) + ' ' + \
                    str(predictions[i]['translation'][0]) + ' ' + \
                    str(predictions[i]['translation'][1]) + ' ' + \
                    str(predictions[i]['translation'][2]) + ' ' + \
                    str(predictions[i]['size'][0]) + ' ' + \
                    str(predictions[i]['size'][1]) + ' ' + \
                    str(predictions[i]['size'][2]) + ' ' + \
                    str(Quaternion(list(predictions[i]['rotation']))
                        .yaw_pitch_roll[0]) + ' ' + \
                    predictions[i]['name'] + ' '
            prediction_str = prediction_str[:-1]
            idx = Id_list.index(token)
            pred_list[idx] = prediction_str
        df = pd.DataFrame({'Id': Id_list, 'PredictionString': pred_list})
        df.to_csv(csv_savepath, index=False)


def output_to_lyft_box(detection):
    """Convert the output to the box class in the Lyft.

    Args:
        detection (dict): Detection results.

    Returns:
        list[:obj:``LyftBox``]: List of standard LyftBoxes.
    """
    box3d = detection['boxes_3d']
    scores = detection['scores_3d'].numpy()
    labels = detection['labels_3d'].numpy()

    box_gravity_center = box3d.gravity_center.numpy()
    box_dims = box3d.dims.numpy()
    box_yaw = box3d.yaw.numpy()
    # TODO: check whether this is necessary
    # with dir_offset & dir_limit in the head
    box_yaw = -box_yaw - np.pi / 2

    box_list = []
    for i in range(len(box3d)):
        quat = Quaternion(axis=[0, 0, 1], radians=box_yaw[i])
        box = LyftBox(
            box_gravity_center[i],
            box_dims[i],
            quat,
            label=labels[i],
            score=scores[i])
        box_list.append(box)
    return box_list


def lidar_lyft_box_to_global(info, boxes):
    """Convert the box from ego to global coordinate.

    Args:
        info (dict): Info for a specific sample data, including the
            calibration information.
        boxes (list[:obj:``LyftBox``]): List of predicted LyftBoxes.

    Returns:
        list: List of standard LyftBoxes in the global
            coordinate.
    """
    box_list = []
    for box in boxes:
        # Move box to ego vehicle coord system
        box.rotate(Quaternion(info['lidar2ego_rotation']))
        box.translate(np.array(info['lidar2ego_translation']))
        # Move box to global coord system
        box.rotate(Quaternion(info['ego2global_rotation']))
        box.translate(np.array(info['ego2global_translation']))
        box_list.append(box)
    return box_list