custom_3d.py 7.56 KB
Newer Older
1
2
import mmcv
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
3
4
import tempfile
from os import path as osp
zhangwenwei's avatar
zhangwenwei committed
5
from torch.utils.data import Dataset
6
7

from mmdet.datasets import DATASETS
wuyuefeng's avatar
Demo  
wuyuefeng committed
8
from ..core.bbox import get_box_type
9
10
11
12
from .pipelines import Compose


@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
13
class Custom3DDataset(Dataset):
zhangwenwei's avatar
zhangwenwei committed
14
    """Customized 3D dataset.
15
16
17
18
19
20
21
22
23
24
25

    This is the base dataset of SUNRGB-D, ScanNet, nuScenes, and KITTI
    dataset.

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
wangtai's avatar
wangtai committed
26
        modality (dict, optional): Modality to specify the sensor data used
27
28
29
30
31
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'LiDAR'. Available options includes
wangtai's avatar
wangtai committed
32

33
34
35
36
37
38
39
40
            - 'LiDAR': box in LiDAR coordinates
            - 'Depth': box in depth coordinates, usually for indoor dataset
            - 'Camera': box in camera coordinates
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
    """
41
42

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
43
                 data_root,
44
45
                 ann_file,
                 pipeline=None,
liyinhao's avatar
liyinhao committed
46
                 classes=None,
zhangwenwei's avatar
zhangwenwei committed
47
                 modality=None,
48
                 box_type_3d='LiDAR',
wuyuefeng's avatar
Votenet  
wuyuefeng committed
49
                 filter_empty_gt=True,
zhangwenwei's avatar
zhangwenwei committed
50
                 test_mode=False):
51
        super().__init__()
zhangwenwei's avatar
zhangwenwei committed
52
53
        self.data_root = data_root
        self.ann_file = ann_file
54
        self.test_mode = test_mode
zhangwenwei's avatar
zhangwenwei committed
55
        self.modality = modality
wuyuefeng's avatar
Votenet  
wuyuefeng committed
56
        self.filter_empty_gt = filter_empty_gt
wuyuefeng's avatar
Demo  
wuyuefeng committed
57
        self.box_type_3d, self.box_mode_3d = get_box_type(box_type_3d)
zhangwenwei's avatar
zhangwenwei committed
58
59
60

        self.CLASSES = self.get_classes(classes)
        self.data_infos = self.load_annotations(self.ann_file)
61
62
63
64

        if pipeline is not None:
            self.pipeline = Compose(pipeline)

zhangwenwei's avatar
zhangwenwei committed
65
66
67
68
69
70
        # set group flag for the sampler
        if not self.test_mode:
            self._set_group_flag()

    def load_annotations(self, ann_file):
        return mmcv.load(ann_file)
71
72
73
74

    def get_data_info(self, index):
        info = self.data_infos[index]
        sample_idx = info['point_cloud']['lidar_idx']
liyinhao's avatar
liyinhao committed
75
        pts_filename = osp.join(self.data_root, info['pts_path'])
76

liyinhao's avatar
liyinhao committed
77
78
79
80
        input_dict = dict(
            pts_filename=pts_filename,
            sample_idx=sample_idx,
            file_name=pts_filename)
81

zhangwenwei's avatar
zhangwenwei committed
82
        if not self.test_mode:
liyinhao's avatar
liyinhao committed
83
            annos = self.get_ann_info(index)
zhangwenwei's avatar
zhangwenwei committed
84
            input_dict['ann_info'] = annos
wuyuefeng's avatar
Votenet  
wuyuefeng committed
85
            if self.filter_empty_gt and len(annos['gt_bboxes_3d']) == 0:
zhangwenwei's avatar
zhangwenwei committed
86
                return None
87
88
        return input_dict

zhangwenwei's avatar
zhangwenwei committed
89
    def pre_pipeline(self, results):
zhangwenwei's avatar
zhangwenwei committed
90
        results['img_fields'] = []
zhangwenwei's avatar
zhangwenwei committed
91
92
93
        results['bbox3d_fields'] = []
        results['pts_mask_fields'] = []
        results['pts_seg_fields'] = []
zhangwenwei's avatar
zhangwenwei committed
94
95
96
        results['bbox_fields'] = []
        results['mask_fields'] = []
        results['seg_fields'] = []
97
98
        results['box_type_3d'] = self.box_type_3d
        results['box_mode_3d'] = self.box_mode_3d
99

liyinhao's avatar
liyinhao committed
100
101
    def prepare_train_data(self, index):
        input_dict = self.get_data_info(index)
102
103
        if input_dict is None:
            return None
zhangwenwei's avatar
zhangwenwei committed
104
        self.pre_pipeline(input_dict)
105
        example = self.pipeline(input_dict)
wuyuefeng's avatar
Votenet  
wuyuefeng committed
106
107
        if self.filter_empty_gt and (example is None or len(
                example['gt_bboxes_3d']._data) == 0):
108
109
110
            return None
        return example

111
112
    def prepare_test_data(self, index):
        input_dict = self.get_data_info(index)
zhangwenwei's avatar
zhangwenwei committed
113
        self.pre_pipeline(input_dict)
114
115
        example = self.pipeline(input_dict)
        return example
116

liyinhao's avatar
liyinhao committed
117
118
    @classmethod
    def get_classes(cls, classes=None):
119
120
        """Get class names of current dataset.

liyinhao's avatar
liyinhao committed
121
122
123
124
125
126
        Args:
            classes (Sequence[str] | str | None): If classes is None, use
                default CLASSES defined by builtin dataset. If classes is a
                string, take it as a file name. The file contains the name of
                classes where each line contains one class name. If classes is
                a tuple or list, override the CLASSES defined by the dataset.
zhangwenwei's avatar
zhangwenwei committed
127
128
129

        Return:
            list[str]: return the list of class names
liyinhao's avatar
liyinhao committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
        """
        if classes is None:
            return cls.CLASSES

        if isinstance(classes, str):
            # take it as a file path
            class_names = mmcv.list_from_file(classes)
        elif isinstance(classes, (tuple, list)):
            class_names = classes
        else:
            raise ValueError(f'Unsupported type {type(classes)} of classes.')

        return class_names

liyinhao's avatar
liyinhao committed
144
145
146
147
148
149
150
151
152
153
    def format_results(self,
                       outputs,
                       pklfile_prefix=None,
                       submission_prefix=None):
        if pklfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            pklfile_prefix = osp.join(tmp_dir.name, 'results')
            out = f'{pklfile_prefix}.pkl'
        mmcv.dump(outputs, out)
        return outputs, tmp_dir
154

liyinhao's avatar
liyinhao committed
155
156
157
158
159
160
161
    def evaluate(self,
                 results,
                 metric=None,
                 iou_thr=(0.25, 0.5),
                 logger=None,
                 show=False,
                 out_dir=None):
162
163
164
165
166
        """Evaluate.

        Evaluation in indoor protocol.

        Args:
liyinhao's avatar
liyinhao committed
167
            results (list[dict]): List of results.
wuyuefeng's avatar
wuyuefeng committed
168
169
            metric (str | list[str]): Metrics to be evaluated.
            iou_thr (list[float]): AP IoU thresholds.
liyinhao's avatar
liyinhao committed
170
171
172
173
            show (bool): Whether to visualize.
                Default: False.
            out_dir (str): Path to save the visualization results.
                Default: None.
wuyuefeng's avatar
Votenet  
wuyuefeng committed
174

liyinhao's avatar
liyinhao committed
175
176
        Returns:
            dict: Evaluation results.
177
178
        """
        from mmdet3d.core.evaluation import indoor_eval
liyinhao's avatar
liyinhao committed
179
180
        assert isinstance(
            results, list), f'Expect results to be list, got {type(results)}.'
zhangwenwei's avatar
zhangwenwei committed
181
        assert len(results) > 0, 'Expect length of results > 0.'
wuyuefeng's avatar
Votenet  
wuyuefeng committed
182
        assert len(results) == len(self.data_infos)
liyinhao's avatar
liyinhao committed
183
184
185
        assert isinstance(
            results[0], dict
        ), f'Expect elements in results to be dict, got {type(results[0])}.'
186
        gt_annos = [info['annos'] for info in self.data_infos]
zhangwenwei's avatar
zhangwenwei committed
187
        label2cat = {i: cat_id for i, cat_id in enumerate(self.CLASSES)}
zhangwenwei's avatar
zhangwenwei committed
188
        ret_dict = indoor_eval(
wuyuefeng's avatar
wuyuefeng committed
189
190
191
192
193
194
195
            gt_annos,
            results,
            iou_thr,
            label2cat,
            logger=logger,
            box_type_3d=self.box_type_3d,
            box_mode_3d=self.box_mode_3d)
liyinhao's avatar
liyinhao committed
196
197
        if show:
            self.show(results, out_dir)
wuyuefeng's avatar
wuyuefeng committed
198

liyinhao's avatar
liyinhao committed
199
        return ret_dict
zhangwenwei's avatar
zhangwenwei committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

    def __len__(self):
        return len(self.data_infos)

    def _rand_another(self, idx):
        pool = np.where(self.flag == self.flag[idx])[0]
        return np.random.choice(pool)

    def __getitem__(self, idx):
        if self.test_mode:
            return self.prepare_test_data(idx)
        while True:
            data = self.prepare_train_data(idx)
            if data is None:
                idx = self._rand_another(idx)
                continue
            return data

    def _set_group_flag(self):
        """Set flag according to image aspect ratio.

        Images with aspect ratio greater than 1 will be set as group 1,
zhangwenwei's avatar
zhangwenwei committed
222
223
        otherwise group 0. In 3D datasets, they are all the same, thus are all
        zeros
zhangwenwei's avatar
zhangwenwei committed
224
225
        """
        self.flag = np.zeros(len(self), dtype=np.uint8)