detr3d_r101_gridmask.py 8.04 KB
Newer Older
1
2
3
4
5
_base_ = [
    # 'mmdet3d::_base_/datasets/nus-3d.py',
    'mmdet3d::_base_/default_runtime.py'
]

6
custom_imports = dict(imports=['projects.DETR3D.detr3d'])
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# If point cloud range is changed, the models should also change their point
# cloud range accordingly
point_cloud_range = [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]
voxel_size = [0.2, 0.2, 8]

img_norm_cfg = dict(
    mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False)
# For nuScenes we usually do 10-class detection
class_names = [
    'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
    'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
]

input_modality = dict(
    use_lidar=False,
    use_camera=True,
    use_radar=False,
    use_map=False,
    use_external=False)
# this means type='DETR3D' will be processed as 'mmdet3d.DETR3D'
default_scope = 'mmdet3d'
model = dict(
    type='DETR3D',
    use_grid_mask=True,
    data_preprocessor=dict(
        type='Det3DDataPreprocessor', **img_norm_cfg, pad_size_divisor=32),
    img_backbone=dict(
        type='mmdet.ResNet',
        depth=101,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
        norm_cfg=dict(type='BN2d', requires_grad=False),
        norm_eval=True,
        style='caffe',
        dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
        stage_with_dcn=(False, False, True, True)),
    img_neck=dict(
        type='mmdet.FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        start_level=1,
        add_extra_convs='on_output',
        num_outs=4,
        relu_before_extra_convs=True),
    pts_bbox_head=dict(
        type='DETR3DHead',
        num_query=900,
        num_classes=10,
        in_channels=256,
        sync_cls_avg_factor=True,
        with_box_refine=True,
        as_two_stage=False,
        transformer=dict(
            type='Detr3DTransformer',
            decoder=dict(
                type='Detr3DTransformerDecoder',
                num_layers=6,
                return_intermediate=True,
                transformerlayers=dict(
                    type='mmdet.DetrTransformerDecoderLayer',
                    attn_cfgs=[
                        dict(
                            type='MultiheadAttention',  # mmcv.
                            embed_dims=256,
                            num_heads=8,
                            dropout=0.1),
                        dict(
                            type='Detr3DCrossAtten',
                            pc_range=point_cloud_range,
                            num_points=1,
                            embed_dims=256)
                    ],
                    feedforward_channels=512,
                    ffn_dropout=0.1,
                    operation_order=('self_attn', 'norm', 'cross_attn', 'norm',
                                     'ffn', 'norm')))),
        bbox_coder=dict(
            type='NMSFreeCoder',
            post_center_range=[-61.2, -61.2, -10.0, 61.2, 61.2, 10.0],
            pc_range=point_cloud_range,
            max_num=300,
            voxel_size=voxel_size,
            num_classes=10),
        positional_encoding=dict(
            type='mmdet.SinePositionalEncoding',
            num_feats=128,
            normalize=True,
            offset=-0.5),
        loss_cls=dict(
            type='mmdet.FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=2.0),
        loss_bbox=dict(type='mmdet.L1Loss', loss_weight=0.25),
        loss_iou=dict(type='mmdet.GIoULoss', loss_weight=0.0)),
    # model training and testing settings
    train_cfg=dict(
        pts=dict(
            grid_size=[512, 512, 1],
            voxel_size=voxel_size,
            point_cloud_range=point_cloud_range,
            out_size_factor=4,
            assigner=dict(
                type='HungarianAssigner3D',
                cls_cost=dict(type='mmdet.FocalLossCost', weight=2.0),
                reg_cost=dict(type='BBox3DL1Cost', weight=0.25),
                # ↓ Fake cost. This is just to get compatible with DETR head
                iou_cost=dict(type='mmdet.IoUCost', weight=0.0),
                pc_range=point_cloud_range))))

dataset_type = 'NuScenesDataset'
data_root = 'data/nuscenes/'

test_transforms = [
    dict(
        type='RandomResize3D',
        scale=(1600, 900),
        ratio_range=(1., 1.),
        keep_ratio=True)
]
train_transforms = [dict(type='PhotoMetricDistortion3D')] + test_transforms

131
backend_args = None
132
train_pipeline = [
133
134
135
136
137
    dict(
        type='LoadMultiViewImageFromFiles',
        to_float32=True,
        num_views=6,
        backend_args=backend_args),
138
139
140
141
142
143
144
145
146
147
148
149
    dict(
        type='LoadAnnotations3D',
        with_bbox_3d=True,
        with_label_3d=True,
        with_attr_label=False),
    dict(type='MultiViewWrapper', transforms=train_transforms),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectNameFilter', classes=class_names),
    dict(type='Pack3DDetInputs', keys=['img', 'gt_bboxes_3d', 'gt_labels_3d'])
]

test_pipeline = [
150
151
152
153
154
    dict(
        type='LoadMultiViewImageFromFiles',
        to_float32=True,
        num_views=6,
        backend_args=backend_args),
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    dict(type='MultiViewWrapper', transforms=test_transforms),
    dict(type='Pack3DDetInputs', keys=['img'])
]

metainfo = dict(classes=class_names)
data_prefix = dict(
    pts='',
    CAM_FRONT='samples/CAM_FRONT',
    CAM_FRONT_LEFT='samples/CAM_FRONT_LEFT',
    CAM_FRONT_RIGHT='samples/CAM_FRONT_RIGHT',
    CAM_BACK='samples/CAM_BACK',
    CAM_BACK_RIGHT='samples/CAM_BACK_RIGHT',
    CAM_BACK_LEFT='samples/CAM_BACK_LEFT')

train_dataloader = dict(
    batch_size=1,
    num_workers=4,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file='nuscenes_infos_train.pkl',
        pipeline=train_pipeline,
        load_type='frame_based',
        metainfo=metainfo,
        modality=input_modality,
        test_mode=False,
        data_prefix=data_prefix,
        # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
        # and box_type_3d='Depth' in sunrgbd and scannet dataset.
187
188
        box_type_3d='LiDAR',
        backend_args=backend_args))
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

val_dataloader = dict(
    batch_size=1,
    num_workers=4,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file='nuscenes_infos_val.pkl',
        load_type='frame_based',
        pipeline=test_pipeline,
        metainfo=metainfo,
        modality=input_modality,
        test_mode=True,
        data_prefix=data_prefix,
206
207
        box_type_3d='LiDAR',
        backend_args=backend_args))
208
209
210
211
212
213
214

test_dataloader = val_dataloader

val_evaluator = dict(
    type='NuScenesMetric',
    data_root=data_root,
    ann_file=data_root + 'nuscenes_infos_val.pkl',
215
216
    metric='bbox',
    backend_args=backend_args)
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
test_evaluator = val_evaluator

optim_wrapper = dict(
    type='OptimWrapper',
    optimizer=dict(type='AdamW', lr=2e-4, weight_decay=0.01),
    paramwise_cfg=dict(custom_keys={'img_backbone': dict(lr_mult=0.1)}),
    clip_grad=dict(max_norm=35, norm_type=2),
)

# learning policy
param_scheduler = [
    dict(
        type='LinearLR',
        start_factor=1.0 / 3,
        by_epoch=False,
        begin=0,
        end=500),
    dict(
        type='CosineAnnealingLR',
        by_epoch=True,
        begin=0,
        end=24,
        T_max=24,
        eta_min_ratio=1e-3)
]

total_epochs = 24

train_cfg = dict(
    type='EpochBasedTrainLoop', max_epochs=total_epochs, val_interval=2)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
default_hooks = dict(
    checkpoint=dict(
        type='CheckpointHook', interval=1, max_keep_ckpts=1, save_last=True))
load_from = 'ckpts/fcos3d.pth'

# setuptools 65 downgrades to 58.
# In mmlab-node we use setuptools 61 but occurs NO errors
vis_backends = [dict(type='TensorboardVisBackend')]
visualizer = dict(
    type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer')