kitti_metric.py 28 KB
Newer Older
VVsssssk's avatar
VVsssssk committed
1
2
3
# Copyright (c) OpenMMLab. All rights reserved.
import tempfile
from os import path as osp
4
from typing import Dict, List, Optional, Sequence, Tuple, Union
VVsssssk's avatar
VVsssssk committed
5

6
import mmengine
VVsssssk's avatar
VVsssssk committed
7
8
import numpy as np
import torch
9
from mmengine import load
VVsssssk's avatar
VVsssssk committed
10
from mmengine.evaluator import BaseMetric
11
from mmengine.logging import MMLogger, print_log
VVsssssk's avatar
VVsssssk committed
12

zhangshilong's avatar
zhangshilong committed
13
from mmdet3d.evaluation import kitti_eval
VVsssssk's avatar
VVsssssk committed
14
from mmdet3d.registry import METRICS
zhangshilong's avatar
zhangshilong committed
15
16
from mmdet3d.structures import (Box3DMode, CameraInstance3DBoxes,
                                LiDARInstance3DBoxes, points_cam2img)
VVsssssk's avatar
VVsssssk committed
17
18
19
20
21
22
23
24


@METRICS.register_module()
class KittiMetric(BaseMetric):
    """Kitti evaluation metric.

    Args:
        ann_file (str): Annotation file path.
25
26
27
        metric (str or List[str]): Metrics to be evaluated.
            Defaults to 'bbox'.
        pcd_limit_range (List[float]): The range of point cloud used to
VVsssssk's avatar
VVsssssk committed
28
            filter invalid predicted boxes.
29
            Defaults to [0, -40, -3, 70.4, 40, 0.0].
VVsssssk's avatar
VVsssssk committed
30
31
32
33
34
35
        prefix (str, optional): The prefix that will be added in the metric
            names to disambiguate homonymous metrics of different evaluators.
            If prefix is not provided in the argument, self.default_prefix
            will be used instead. Defaults to None.
        pklfile_prefix (str, optional): The prefix of pkl files, including
            the file path and the prefix of filename, e.g., "a/b/prefix".
36
37
38
39
            If not specified, a temp file will be created. Defaults to None.
        default_cam_key (str): The default camera for lidar to camera
            conversion. By default, KITTI: 'CAM2', Waymo: 'CAM_FRONT'.
            Defaults to 'CAM2'
40
41
42
43
        format_only (bool): Format the output results without perform
            evaluation. It is useful when you want to format the result
            to a specific format and submit it to the test server.
            Defaults to False.
VVsssssk's avatar
VVsssssk committed
44
45
        submission_prefix (str, optional): The prefix of submission data.
            If not specified, the submission data will not be generated.
46
            Defaults to None.
VVsssssk's avatar
VVsssssk committed
47
48
49
        collect_device (str): Device name used for collecting results
            from different ranks during distributed training. Must be 'cpu' or
            'gpu'. Defaults to 'cpu'.
50
51
        backend_args (dict, optional): Arguments to instantiate the
            corresponding backend. Defaults to None.
VVsssssk's avatar
VVsssssk committed
52
53
    """

54
55
56
57
58
59
60
61
62
63
64
    def __init__(self,
                 ann_file: str,
                 metric: Union[str, List[str]] = 'bbox',
                 pcd_limit_range: List[float] = [0, -40, -3, 70.4, 40, 0.0],
                 prefix: Optional[str] = None,
                 pklfile_prefix: Optional[str] = None,
                 default_cam_key: str = 'CAM2',
                 format_only: bool = False,
                 submission_prefix: Optional[str] = None,
                 collect_device: str = 'cpu',
                 backend_args: Optional[dict] = None) -> None:
VVsssssk's avatar
VVsssssk committed
65
66
67
68
69
70
        self.default_prefix = 'Kitti metric'
        super(KittiMetric, self).__init__(
            collect_device=collect_device, prefix=prefix)
        self.pcd_limit_range = pcd_limit_range
        self.ann_file = ann_file
        self.pklfile_prefix = pklfile_prefix
71
72
        self.format_only = format_only
        if self.format_only:
73
74
75
            assert submission_prefix is not None, 'submission_prefix must be '
            'not None when format_only is True, otherwise the result files '
            'will be saved to a temp directory which will be cleaned up at '
76
77
            'the end.'

VVsssssk's avatar
VVsssssk committed
78
        self.submission_prefix = submission_prefix
79
        self.default_cam_key = default_cam_key
80
        self.backend_args = backend_args
81
82

        allowed_metrics = ['bbox', 'img_bbox', 'mAP', 'LET_mAP']
VVsssssk's avatar
VVsssssk committed
83
84
85
86
        self.metrics = metric if isinstance(metric, list) else [metric]
        for metric in self.metrics:
            if metric not in allowed_metrics:
                raise KeyError("metric should be one of 'bbox', 'img_bbox', "
87
                               f'but got {metric}.')
VVsssssk's avatar
VVsssssk committed
88

89
    def convert_annos_to_kitti_annos(self, data_infos: dict) -> List[dict]:
VVsssssk's avatar
VVsssssk committed
90
91
92
        """Convert loading annotations to Kitti annotations.

        Args:
93
94
            data_infos (dict): Data infos including metainfo and annotations
                loaded from ann_file.
VVsssssk's avatar
VVsssssk committed
95
96
97
98

        Returns:
            List[dict]: List of Kitti annotations.
        """
99
        data_annos = data_infos['data_list']
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
        if not self.format_only:
            cat2label = data_infos['metainfo']['categories']
            label2cat = dict((v, k) for (k, v) in cat2label.items())
            assert 'instances' in data_annos[0]
            for i, annos in enumerate(data_annos):
                if len(annos['instances']) == 0:
                    kitti_annos = {
                        'name': np.array([]),
                        'truncated': np.array([]),
                        'occluded': np.array([]),
                        'alpha': np.array([]),
                        'bbox': np.zeros([0, 4]),
                        'dimensions': np.zeros([0, 3]),
                        'location': np.zeros([0, 3]),
                        'rotation_y': np.array([]),
                        'score': np.array([]),
                    }
                else:
                    kitti_annos = {
                        'name': [],
                        'truncated': [],
                        'occluded': [],
                        'alpha': [],
                        'bbox': [],
                        'location': [],
                        'dimensions': [],
                        'rotation_y': [],
                        'score': []
                    }
                    for instance in annos['instances']:
                        label = instance['bbox_label']
                        kitti_annos['name'].append(label2cat[label])
                        kitti_annos['truncated'].append(instance['truncated'])
                        kitti_annos['occluded'].append(instance['occluded'])
                        kitti_annos['alpha'].append(instance['alpha'])
                        kitti_annos['bbox'].append(instance['bbox'])
                        kitti_annos['location'].append(instance['bbox_3d'][:3])
                        kitti_annos['dimensions'].append(
                            instance['bbox_3d'][3:6])
                        kitti_annos['rotation_y'].append(
                            instance['bbox_3d'][6])
                        kitti_annos['score'].append(instance['score'])
                    for name in kitti_annos:
                        kitti_annos[name] = np.array(kitti_annos[name])
                data_annos[i]['kitti_annos'] = kitti_annos
VVsssssk's avatar
VVsssssk committed
145
146
        return data_annos

147
    def process(self, data_batch: dict, data_samples: Sequence[dict]) -> None:
VVsssssk's avatar
VVsssssk committed
148
149
150
151
152
153
154
        """Process one batch of data samples and predictions.

        The processed results should be stored in ``self.results``,
        which will be used to compute the metrics when all batches
        have been processed.

        Args:
155
156
            data_batch (dict): A batch of data from the dataloader.
            data_samples (Sequence[dict]): A batch of outputs from
VVsssssk's avatar
VVsssssk committed
157
158
                the model.
        """
159
160

        for data_sample in data_samples:
VVsssssk's avatar
VVsssssk committed
161
            result = dict()
162
163
164
165
166
167
168
169
170
            pred_3d = data_sample['pred_instances_3d']
            pred_2d = data_sample['pred_instances']
            for attr_name in pred_3d:
                pred_3d[attr_name] = pred_3d[attr_name].to('cpu')
            result['pred_instances_3d'] = pred_3d
            for attr_name in pred_2d:
                pred_2d[attr_name] = pred_2d[attr_name].to('cpu')
            result['pred_instances'] = pred_2d
            sample_idx = data_sample['sample_idx']
171
            result['sample_idx'] = sample_idx
172
            self.results.append(result)
VVsssssk's avatar
VVsssssk committed
173

174
    def compute_metrics(self, results: List[dict]) -> Dict[str, float]:
VVsssssk's avatar
VVsssssk committed
175
176
177
        """Compute the metrics from processed results.

        Args:
178
            results (List[dict]): The processed results of the whole dataset.
VVsssssk's avatar
VVsssssk committed
179
180
181
182
183
184

        Returns:
            Dict[str, float]: The computed metrics. The keys are the names of
            the metrics, and the values are corresponding results.
        """
        logger: MMLogger = MMLogger.get_current_instance()
185
        self.classes = self.dataset_meta['classes']
VVsssssk's avatar
VVsssssk committed
186
187

        # load annotations
188
        pkl_infos = load(self.ann_file, backend_args=self.backend_args)
189
        self.data_infos = self.convert_annos_to_kitti_annos(pkl_infos)
VVsssssk's avatar
VVsssssk committed
190
191
192
193
194
195
        result_dict, tmp_dir = self.format_results(
            results,
            pklfile_prefix=self.pklfile_prefix,
            submission_prefix=self.submission_prefix,
            classes=self.classes)

196
197
198
199
200
201
202
        metric_dict = {}

        if self.format_only:
            logger.info('results are saved in '
                        f'{osp.dirname(self.submission_prefix)}')
            return metric_dict

VVsssssk's avatar
VVsssssk committed
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
        gt_annos = [
            self.data_infos[result['sample_idx']]['kitti_annos']
            for result in results
        ]

        for metric in self.metrics:
            ap_dict = self.kitti_evaluate(
                result_dict,
                gt_annos,
                metric=metric,
                logger=logger,
                classes=self.classes)
            for result in ap_dict:
                metric_dict[result] = ap_dict[result]

        if tmp_dir is not None:
            tmp_dir.cleanup()
        return metric_dict

    def kitti_evaluate(self,
223
                       results_dict: dict,
VVsssssk's avatar
VVsssssk committed
224
                       gt_annos: List[dict],
225
226
227
                       metric: Optional[str] = None,
                       classes: Optional[List[str]] = None,
                       logger: Optional[MMLogger] = None) -> Dict[str, float]:
VVsssssk's avatar
VVsssssk committed
228
229
230
231
        """Evaluation in KITTI protocol.

        Args:
            results_dict (dict): Formatted results of the dataset.
232
            gt_annos (List[dict]): Contain gt information of each sample.
VVsssssk's avatar
VVsssssk committed
233
            metric (str, optional): Metrics to be evaluated.
234
235
236
                Defaults to None.
            classes (List[str], optional): A list of class name.
                Defaults to None.
VVsssssk's avatar
VVsssssk committed
237
            logger (MMLogger, optional): Logger used for printing
238
                related information during evaluation. Defaults to None.
VVsssssk's avatar
VVsssssk committed
239
240

        Returns:
241
            Dict[str, float]: Results of each evaluation metric.
VVsssssk's avatar
VVsssssk committed
242
243
        """
        ap_dict = dict()
VVsssssk's avatar
VVsssssk committed
244
        for name in results_dict:
VVsssssk's avatar
VVsssssk committed
245
246
247
248
249
            if name == 'pred_instances' or metric == 'img_bbox':
                eval_types = ['bbox']
            else:
                eval_types = ['bbox', 'bev', '3d']
            ap_result_str, ap_dict_ = kitti_eval(
VVsssssk's avatar
VVsssssk committed
250
                gt_annos, results_dict[name], classes, eval_types=eval_types)
VVsssssk's avatar
VVsssssk committed
251
            for ap_type, ap in ap_dict_.items():
252
                ap_dict[f'{name}/{ap_type}'] = float(f'{ap:.4f}')
VVsssssk's avatar
VVsssssk committed
253
254
255
256
257

            print_log(f'Results of {name}:\n' + ap_result_str, logger=logger)

        return ap_dict

258
259
260
261
262
263
264
    def format_results(
        self,
        results: List[dict],
        pklfile_prefix: Optional[str] = None,
        submission_prefix: Optional[str] = None,
        classes: Optional[List[str]] = None
    ) -> Tuple[dict, Union[tempfile.TemporaryDirectory, None]]:
VVsssssk's avatar
VVsssssk committed
265
266
267
        """Format the results to pkl file.

        Args:
268
            results (List[dict]): Testing results of the dataset.
VVsssssk's avatar
VVsssssk committed
269
270
271
            pklfile_prefix (str, optional): The prefix of pkl files. It
                includes the file path and the prefix of filename, e.g.,
                "a/b/prefix". If not specified, a temp file will be created.
272
                Defaults to None.
VVsssssk's avatar
VVsssssk committed
273
274
275
            submission_prefix (str, optional): The prefix of submitted files.
                It includes the file path and the prefix of filename, e.g.,
                "a/b/prefix". If not specified, a temp file will be created.
276
277
278
                Defaults to None.
            classes (List[str], optional): A list of class name.
                Defaults to None.
VVsssssk's avatar
VVsssssk committed
279
280
281

        Returns:
            tuple: (result_dict, tmp_dir), result_dict is a dict containing
282
283
            the formatted result, tmp_dir is the temporal directory created
            for saving json files when jsonfile_prefix is not specified.
VVsssssk's avatar
VVsssssk committed
284
285
286
287
288
289
290
        """
        if pklfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            pklfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            tmp_dir = None
        result_dict = dict()
291
        sample_idx_list = [result['sample_idx'] for result in results]
VVsssssk's avatar
VVsssssk committed
292
293
294
295
296
297
298
299
300
        for name in results[0]:
            if submission_prefix is not None:
                submission_prefix_ = osp.join(submission_prefix, name)
            else:
                submission_prefix_ = None
            if pklfile_prefix is not None:
                pklfile_prefix_ = osp.join(pklfile_prefix, name) + '.pkl'
            else:
                pklfile_prefix_ = None
301
302
            if 'pred_instances' in name and '3d' in name and name[
                    0] != '_' and results[0][name]:
VVsssssk's avatar
VVsssssk committed
303
304
                net_outputs = [result[name] for result in results]
                result_list_ = self.bbox2result_kitti(net_outputs,
305
                                                      sample_idx_list, classes,
VVsssssk's avatar
VVsssssk committed
306
307
308
                                                      pklfile_prefix_,
                                                      submission_prefix_)
                result_dict[name] = result_list_
309
310
311
            elif name == 'pred_instances' and name[0] != '_' and results[0][
                    name]:
                net_outputs = [result[name] for result in results]
VVsssssk's avatar
VVsssssk committed
312
                result_list_ = self.bbox2result_kitti2d(
313
                    net_outputs, sample_idx_list, classes, pklfile_prefix_,
VVsssssk's avatar
VVsssssk committed
314
315
316
317
                    submission_prefix_)
                result_dict[name] = result_list_
        return result_dict, tmp_dir

318
319
320
321
322
323
324
    def bbox2result_kitti(
            self,
            net_outputs: List[dict],
            sample_idx_list: List[int],
            class_names: List[str],
            pklfile_prefix: Optional[str] = None,
            submission_prefix: Optional[str] = None) -> List[dict]:
VVsssssk's avatar
VVsssssk committed
325
326
327
328
        """Convert 3D detection results to kitti format for evaluation and test
        submission.

        Args:
329
            net_outputs (List[dict]): List of dict storing the
VVsssssk's avatar
VVsssssk committed
330
                inferenced bounding boxes and scores.
331
332
            sample_idx_list (List[int]): List of input sample idx.
            class_names (List[str]): A list of class names.
VVsssssk's avatar
VVsssssk committed
333
334
335
336
337
338
            pklfile_prefix (str, optional): The prefix of pkl file.
                Defaults to None.
            submission_prefix (str, optional): The prefix of submission file.
                Defaults to None.

        Returns:
339
            List[dict]: A list of dictionaries with the kitti format.
VVsssssk's avatar
VVsssssk committed
340
341
342
343
        """
        assert len(net_outputs) == len(self.data_infos), \
            'invalid list length of network outputs'
        if submission_prefix is not None:
344
            mmengine.mkdir_or_exist(submission_prefix)
VVsssssk's avatar
VVsssssk committed
345
346

        det_annos = []
347
        print('\nConverting 3D prediction to KITTI format')
VVsssssk's avatar
VVsssssk committed
348
        for idx, pred_dicts in enumerate(
349
                mmengine.track_iter_progress(net_outputs)):
350
            sample_idx = sample_idx_list[idx]
VVsssssk's avatar
VVsssssk committed
351
352
353
            info = self.data_infos[sample_idx]
            # Here default used 'CAM2' to compute metric. If you want to
            # use another camera, please modify it.
354
355
            image_shape = (info['images'][self.default_cam_key]['height'],
                           info['images'][self.default_cam_key]['width'])
VVsssssk's avatar
VVsssssk committed
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
            box_dict = self.convert_valid_bboxes(pred_dicts, info)
            anno = {
                'name': [],
                'truncated': [],
                'occluded': [],
                'alpha': [],
                'bbox': [],
                'dimensions': [],
                'location': [],
                'rotation_y': [],
                'score': []
            }
            if len(box_dict['bbox']) > 0:
                box_2d_preds = box_dict['bbox']
                box_preds = box_dict['box3d_camera']
                scores = box_dict['scores']
                box_preds_lidar = box_dict['box3d_lidar']
                label_preds = box_dict['label_preds']
374
                pred_box_type_3d = box_dict['pred_box_type_3d']
VVsssssk's avatar
VVsssssk committed
375
376
377
378
379
380
381
382
383

                for box, box_lidar, bbox, score, label in zip(
                        box_preds, box_preds_lidar, box_2d_preds, scores,
                        label_preds):
                    bbox[2:] = np.minimum(bbox[2:], image_shape[::-1])
                    bbox[:2] = np.maximum(bbox[:2], [0, 0])
                    anno['name'].append(class_names[int(label)])
                    anno['truncated'].append(0.0)
                    anno['occluded'].append(0)
384
385
386
387
388
389
                    if pred_box_type_3d == CameraInstance3DBoxes:
                        anno['alpha'].append(-np.arctan2(box[0], box[2]) +
                                             box[6])
                    elif pred_box_type_3d == LiDARInstance3DBoxes:
                        anno['alpha'].append(
                            -np.arctan2(-box_lidar[1], box_lidar[0]) + box[6])
VVsssssk's avatar
VVsssssk committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
                    anno['bbox'].append(bbox)
                    anno['dimensions'].append(box[3:6])
                    anno['location'].append(box[:3])
                    anno['rotation_y'].append(box[6])
                    anno['score'].append(score)

                anno = {k: np.stack(v) for k, v in anno.items()}
            else:
                anno = {
                    'name': np.array([]),
                    'truncated': np.array([]),
                    'occluded': np.array([]),
                    'alpha': np.array([]),
                    'bbox': np.zeros([0, 4]),
                    'dimensions': np.zeros([0, 3]),
                    'location': np.zeros([0, 3]),
                    'rotation_y': np.array([]),
                    'score': np.array([]),
                }

            if submission_prefix is not None:
                curr_file = f'{submission_prefix}/{sample_idx:06d}.txt'
                with open(curr_file, 'w') as f:
                    bbox = anno['bbox']
                    loc = anno['location']
                    dims = anno['dimensions']  # lhw -> hwl

                    for idx in range(len(bbox)):
                        print(
                            '{} -1 -1 {:.4f} {:.4f} {:.4f} {:.4f} '
                            '{:.4f} {:.4f} {:.4f} '
                            '{:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'.format(
                                anno['name'][idx], anno['alpha'][idx],
                                bbox[idx][0], bbox[idx][1], bbox[idx][2],
                                bbox[idx][3], dims[idx][1], dims[idx][2],
                                dims[idx][0], loc[idx][0], loc[idx][1],
                                loc[idx][2], anno['rotation_y'][idx],
                                anno['score'][idx]),
                            file=f)

430
431
            anno['sample_idx'] = np.array(
                [sample_idx] * len(anno['score']), dtype=np.int64)
VVsssssk's avatar
VVsssssk committed
432

433
            det_annos.append(anno)
VVsssssk's avatar
VVsssssk committed
434
435
436
437
438
439

        if pklfile_prefix is not None:
            if not pklfile_prefix.endswith(('.pkl', '.pickle')):
                out = f'{pklfile_prefix}.pkl'
            else:
                out = pklfile_prefix
440
            mmengine.dump(det_annos, out)
VVsssssk's avatar
VVsssssk committed
441
442
443
444
            print(f'Result is saved to {out}.')

        return det_annos

445
446
447
448
449
450
451
    def bbox2result_kitti2d(
            self,
            net_outputs: List[dict],
            sample_idx_list: List[int],
            class_names: List[str],
            pklfile_prefix: Optional[str] = None,
            submission_prefix: Optional[str] = None) -> List[dict]:
VVsssssk's avatar
VVsssssk committed
452
453
454
455
        """Convert 2D detection results to kitti format for evaluation and test
        submission.

        Args:
456
            net_outputs (List[dict]): List of dict storing the
VVsssssk's avatar
VVsssssk committed
457
                inferenced bounding boxes and scores.
458
459
            sample_idx_list (List[int]): List of input sample idx.
            class_names (List[str]): A list of class names.
VVsssssk's avatar
VVsssssk committed
460
461
462
463
464
465
            pklfile_prefix (str, optional): The prefix of pkl file.
                Defaults to None.
            submission_prefix (str, optional): The prefix of submission file.
                Defaults to None.

        Returns:
466
            List[dict]: A list of dictionaries with the kitti format.
VVsssssk's avatar
VVsssssk committed
467
468
469
470
        """
        assert len(net_outputs) == len(self.data_infos), \
            'invalid list length of network outputs'
        det_annos = []
471
        print('\nConverting 2D prediction to KITTI format')
VVsssssk's avatar
VVsssssk committed
472
        for i, bboxes_per_sample in enumerate(
473
                mmengine.track_iter_progress(net_outputs)):
VVsssssk's avatar
VVsssssk committed
474
475
476
477
478
479
480
481
482
483
            anno = dict(
                name=[],
                truncated=[],
                occluded=[],
                alpha=[],
                bbox=[],
                dimensions=[],
                location=[],
                rotation_y=[],
                score=[])
484
            sample_idx = sample_idx_list[i]
VVsssssk's avatar
VVsssssk committed
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

            num_example = 0
            bbox = bboxes_per_sample['bboxes']
            for i in range(bbox.shape[0]):
                anno['name'].append(class_names[int(
                    bboxes_per_sample['labels'][i])])
                anno['truncated'].append(0.0)
                anno['occluded'].append(0)
                anno['alpha'].append(0.0)
                anno['bbox'].append(bbox[i, :4])
                # set dimensions (height, width, length) to zero
                anno['dimensions'].append(
                    np.zeros(shape=[3], dtype=np.float32))
                # set the 3D translation to (-1000, -1000, -1000)
                anno['location'].append(
                    np.ones(shape=[3], dtype=np.float32) * (-1000.0))
                anno['rotation_y'].append(0.0)
                anno['score'].append(bboxes_per_sample['scores'][i])
                num_example += 1

            if num_example == 0:
506
507
508
509
510
511
512
513
514
515
516
                anno = dict(
                    name=np.array([]),
                    truncated=np.array([]),
                    occluded=np.array([]),
                    alpha=np.array([]),
                    bbox=np.zeros([0, 4]),
                    dimensions=np.zeros([0, 3]),
                    location=np.zeros([0, 3]),
                    rotation_y=np.array([]),
                    score=np.array([]),
                )
VVsssssk's avatar
VVsssssk committed
517
518
519
            else:
                anno = {k: np.stack(v) for k, v in anno.items()}

520
            anno['sample_idx'] = np.array(
VVsssssk's avatar
VVsssssk committed
521
                [sample_idx] * num_example, dtype=np.int64)
522
            det_annos.append(anno)
VVsssssk's avatar
VVsssssk committed
523
524
525
526
527
528

        if pklfile_prefix is not None:
            if not pklfile_prefix.endswith(('.pkl', '.pickle')):
                out = f'{pklfile_prefix}.pkl'
            else:
                out = pklfile_prefix
529
            mmengine.dump(det_annos, out)
VVsssssk's avatar
VVsssssk committed
530
531
532
533
            print(f'Result is saved to {out}.')

        if submission_prefix is not None:
            # save file in submission format
534
            mmengine.mkdir_or_exist(submission_prefix)
VVsssssk's avatar
VVsssssk committed
535
536
            print(f'Saving KITTI submission to {submission_prefix}')
            for i, anno in enumerate(det_annos):
537
                sample_idx = sample_idx_list[i]
VVsssssk's avatar
VVsssssk committed
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
                cur_det_file = f'{submission_prefix}/{sample_idx:06d}.txt'
                with open(cur_det_file, 'w') as f:
                    bbox = anno['bbox']
                    loc = anno['location']
                    dims = anno['dimensions'][::-1]  # lhw -> hwl
                    for idx in range(len(bbox)):
                        print(
                            '{} -1 -1 {:4f} {:4f} {:4f} {:4f} {:4f} {:4f} '
                            '{:4f} {:4f} {:4f} {:4f} {:4f} {:4f} {:4f}'.format(
                                anno['name'][idx],
                                anno['alpha'][idx],
                                *bbox[idx],  # 4 float
                                *dims[idx],  # 3 float
                                *loc[idx],  # 3 float
                                anno['rotation_y'][idx],
                                anno['score'][idx]),
                            file=f,
                        )
            print(f'Result is saved to {submission_prefix}')

        return det_annos

560
    def convert_valid_bboxes(self, box_dict: dict, info: dict) -> dict:
VVsssssk's avatar
VVsssssk committed
561
562
563
564
565
        """Convert the predicted boxes into valid ones.

        Args:
            box_dict (dict): Box dictionaries to be converted.

566
567
568
                - bboxes_3d (:obj:`BaseInstance3DBoxes`): 3D bounding boxes.
                - scores_3d (Tensor): Scores of boxes.
                - labels_3d (Tensor): Class labels of boxes.
VVsssssk's avatar
VVsssssk committed
569
570
571
572
573
574
575
            info (dict): Data info.

        Returns:
            dict: Valid predicted boxes.

                - bbox (np.ndarray): 2D bounding boxes.
                - box3d_camera (np.ndarray): 3D bounding boxes in
576
                  camera coordinate.
VVsssssk's avatar
VVsssssk committed
577
                - box3d_lidar (np.ndarray): 3D bounding boxes in
578
                  LiDAR coordinate.
VVsssssk's avatar
VVsssssk committed
579
580
581
582
583
584
585
586
                - scores (np.ndarray): Scores of boxes.
                - label_preds (np.ndarray): Class label predictions.
                - sample_idx (int): Sample index.
        """
        # TODO: refactor this function
        box_preds = box_dict['bboxes_3d']
        scores = box_dict['scores_3d']
        labels = box_dict['labels_3d']
587
        sample_idx = info['sample_idx']
VVsssssk's avatar
VVsssssk committed
588
589
590
591
592
593
594
595
596
597
598
599
        box_preds.limit_yaw(offset=0.5, period=np.pi * 2)

        if len(box_preds) == 0:
            return dict(
                bbox=np.zeros([0, 4]),
                box3d_camera=np.zeros([0, 7]),
                box3d_lidar=np.zeros([0, 7]),
                scores=np.zeros([0]),
                label_preds=np.zeros([0, 4]),
                sample_idx=sample_idx)
        # Here default used 'CAM2' to compute metric. If you want to
        # use another camera, please modify it.
600
601
602
603
        lidar2cam = np.array(
            info['images'][self.default_cam_key]['lidar2cam']).astype(
                np.float32)
        P2 = np.array(info['images'][self.default_cam_key]['cam2img']).astype(
VVsssssk's avatar
VVsssssk committed
604
            np.float32)
605
606
        img_shape = (info['images'][self.default_cam_key]['height'],
                     info['images'][self.default_cam_key]['width'])
VVsssssk's avatar
VVsssssk committed
607
608
        P2 = box_preds.tensor.new_tensor(P2)

609
610
611
612
613
614
615
        if isinstance(box_preds, LiDARInstance3DBoxes):
            box_preds_camera = box_preds.convert_to(Box3DMode.CAM, lidar2cam)
            box_preds_lidar = box_preds
        elif isinstance(box_preds, CameraInstance3DBoxes):
            box_preds_camera = box_preds
            box_preds_lidar = box_preds.convert_to(Box3DMode.LIDAR,
                                                   np.linalg.inv(lidar2cam))
VVsssssk's avatar
VVsssssk committed
616
617
618
619
620
621
622
623
624
625
626
627
628

        box_corners = box_preds_camera.corners
        box_corners_in_image = points_cam2img(box_corners, P2)
        # box_corners_in_image: [N, 8, 2]
        minxy = torch.min(box_corners_in_image, dim=1)[0]
        maxxy = torch.max(box_corners_in_image, dim=1)[0]
        box_2d_preds = torch.cat([minxy, maxxy], dim=1)
        # Post-processing
        # check box_preds_camera
        image_shape = box_preds.tensor.new_tensor(img_shape)
        valid_cam_inds = ((box_2d_preds[:, 0] < image_shape[1]) &
                          (box_2d_preds[:, 1] < image_shape[0]) &
                          (box_2d_preds[:, 2] > 0) & (box_2d_preds[:, 3] > 0))
629
630
631
632
633
634
635
636
        # check box_preds_lidar
        if isinstance(box_preds, LiDARInstance3DBoxes):
            limit_range = box_preds.tensor.new_tensor(self.pcd_limit_range)
            valid_pcd_inds = ((box_preds_lidar.center > limit_range[:3]) &
                              (box_preds_lidar.center < limit_range[3:]))
            valid_inds = valid_cam_inds & valid_pcd_inds.all(-1)
        else:
            valid_inds = valid_cam_inds
VVsssssk's avatar
VVsssssk committed
637
638
639
640

        if valid_inds.sum() > 0:
            return dict(
                bbox=box_2d_preds[valid_inds, :].numpy(),
641
                pred_box_type_3d=type(box_preds),
VVsssssk's avatar
VVsssssk committed
642
                box3d_camera=box_preds_camera[valid_inds].tensor.numpy(),
643
                box3d_lidar=box_preds_lidar[valid_inds].tensor.numpy(),
VVsssssk's avatar
VVsssssk committed
644
645
646
647
648
649
                scores=scores[valid_inds].numpy(),
                label_preds=labels[valid_inds].numpy(),
                sample_idx=sample_idx)
        else:
            return dict(
                bbox=np.zeros([0, 4]),
650
                pred_box_type_3d=type(box_preds),
VVsssssk's avatar
VVsssssk committed
651
652
653
                box3d_camera=np.zeros([0, 7]),
                box3d_lidar=np.zeros([0, 7]),
                scores=np.zeros([0]),
654
                label_preds=np.zeros([0]),
VVsssssk's avatar
VVsssssk committed
655
                sample_idx=sample_idx)