point-rcnn_8xb2_kitti-3d-3class.py 4.58 KB
Newer Older
1
2
_base_ = [
    '../_base_/datasets/kitti-3d-car.py', '../_base_/models/point_rcnn.py',
3
    '../_base_/default_runtime.py', '../_base_/schedules/cyclic-40e.py'
4
5
6
7
8
]

# dataset settings
dataset_type = 'KittiDataset'
data_root = 'data/kitti/'
9
class_names = ['Pedestrian', 'Cyclist', 'Car']
10
metainfo = dict(classes=class_names)
11
12
point_cloud_range = [0, -40, -3, 70.4, 40, 1]
input_modality = dict(use_lidar=True, use_camera=False)
13
backend_args = None
14
15
16
17
18
19
20
21
22

db_sampler = dict(
    data_root=data_root,
    info_path=data_root + 'kitti_dbinfos_train.pkl',
    rate=1.0,
    prepare=dict(
        filter_by_difficulty=[-1],
        filter_by_min_points=dict(Car=5, Pedestrian=5, Cyclist=5)),
    sample_groups=dict(Car=20, Pedestrian=15, Cyclist=15),
23
24
    classes=class_names,
    points_loader=dict(
25
26
27
28
29
30
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=4,
        use_dim=4,
        backend_args=backend_args),
    backend_args=backend_args)
31
32

train_pipeline = [
33
34
35
36
37
38
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=4,
        use_dim=4,
        backend_args=backend_args),
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='ObjectSample', db_sampler=db_sampler),
    dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5),
    dict(
        type='ObjectNoise',
        num_try=100,
        translation_std=[1.0, 1.0, 0.5],
        global_rot_range=[0.0, 0.0],
        rot_range=[-0.78539816, 0.78539816]),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.78539816, 0.78539816],
        scale_ratio_range=[0.95, 1.05]),
    dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
    dict(type='PointSample', num_points=16384, sample_range=40.0),
    dict(type='PointShuffle'),
57
58
59
    dict(
        type='Pack3DDetInputs',
        keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
60
61
]
test_pipeline = [
62
63
64
65
66
67
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=4,
        use_dim=4,
        backend_args=backend_args),
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    dict(
        type='MultiScaleFlipAug3D',
        img_scale=(1333, 800),
        pts_scale_ratio=1,
        flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
            dict(type='RandomFlip3D'),
            dict(
                type='PointsRangeFilter', point_cloud_range=point_cloud_range),
82
83
84
            dict(type='PointSample', num_points=16384, sample_range=40.0)
        ]),
    dict(type='Pack3DDetInputs', keys=['points'])
85
]
86
87
88
89
train_dataloader = dict(
    batch_size=2,
    num_workers=2,
    dataset=dict(
90
91
        type='RepeatDataset',
        times=2,
92
93
94
        dataset=dict(pipeline=train_pipeline, metainfo=metainfo)))
test_dataloader = dict(dataset=dict(pipeline=test_pipeline, metainfo=metainfo))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline, metainfo=metainfo))
95
96

lr = 0.001  # max learning rate
97
98
99
optim_wrapper = dict(optimizer=dict(lr=lr, betas=(0.95, 0.85)))
train_cfg = dict(by_epoch=True, max_epochs=80, val_interval=2)

100
101
102
103
104
# Default setting for scaling LR automatically
#   - `enable` means enable scaling LR automatically
#       or not by default.
#   - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
param_scheduler = [
    # learning rate scheduler
    # During the first 35 epochs, learning rate increases from 0 to lr * 10
    # during the next 45 epochs, learning rate decreases from lr * 10 to
    # lr * 1e-4
    dict(
        type='CosineAnnealingLR',
        T_max=35,
        eta_min=lr * 10,
        begin=0,
        end=35,
        by_epoch=True,
        convert_to_iter_based=True),
    dict(
        type='CosineAnnealingLR',
        T_max=45,
        eta_min=lr * 1e-4,
        begin=35,
        end=80,
        by_epoch=True,
        convert_to_iter_based=True),
    # momentum scheduler
    # During the first 35 epochs, momentum increases from 0 to 0.85 / 0.95
    # during the next 45 epochs, momentum increases from 0.85 / 0.95 to 1
    dict(
        type='CosineAnnealingMomentum',
        T_max=35,
        eta_min=0.85 / 0.95,
        begin=0,
        end=35,
        by_epoch=True,
        convert_to_iter_based=True),
    dict(
        type='CosineAnnealingMomentum',
        T_max=45,
        eta_min=1,
        begin=35,
        end=80,
        by_epoch=True,
        convert_to_iter_based=True)
]