scannet-3d-18class.py 2.79 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# dataset settings
dataset_type = 'ScanNetDataset'
data_root = './data/scannet/'
class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
               'bookshelf', 'picture', 'counter', 'desk', 'curtain',
               'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
               'garbagebin')
train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        shift_height=True,
        load_dim=6,
        use_dim=[0, 1, 2]),
    dict(
        type='LoadAnnotations3D',
        with_bbox_3d=True,
        with_label_3d=True,
        with_mask_3d=True,
        with_seg_3d=True),
    dict(
        type='PointSegClassMapping',
        valid_cat_ids=(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34,
                       36, 39)),
    dict(type='IndoorPointSample', num_points=40000),
    dict(type='IndoorFlipData', flip_ratio_yz=0.5, flip_ratio_xz=0.5),
    dict(
zhangwenwei's avatar
zhangwenwei committed
27
        type='IndoorGlobalRotScaleTrans',
liyinhao's avatar
liyinhao committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
        shift_height=True,
        rot_range=[-1 / 36, 1 / 36],
        scale_range=None),
    dict(type='DefaultFormatBundle3D', class_names=class_names),
    dict(
        type='Collect3D',
        keys=[
            'points', 'gt_bboxes_3d', 'gt_labels_3d', 'pts_semantic_mask',
            'pts_instance_mask'
        ])
]
test_pipeline = [
    dict(
        type='LoadPointsFromFile',
        shift_height=True,
        load_dim=6,
        use_dim=[0, 1, 2]),
zhangwenwei's avatar
zhangwenwei committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    dict(
        type='MultiScaleFlipAug3D',
        img_scale=(1333, 800),
        pts_scale_ratio=1,
        flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
            dict(type='RandomFlip3D'),
            dict(type='IndoorPointSample', num_points=40000),
            dict(
                type='DefaultFormatBundle3D',
                class_names=class_names,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ])
liyinhao's avatar
liyinhao committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
]

data = dict(
    samples_per_gpu=8,
    workers_per_gpu=4,
    train=dict(
        type='RepeatDataset',
        times=5,
        dataset=dict(
            type=dataset_type,
            data_root=data_root,
            ann_file=data_root + 'scannet_infos_train.pkl',
            pipeline=train_pipeline,
            filter_empty_gt=False,
            classes=class_names)),
    val=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file=data_root + 'scannet_infos_val.pkl',
        pipeline=test_pipeline,
        classes=class_names,
        test_mode=True),
    test=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file=data_root + 'scannet_infos_val.pkl',
        pipeline=test_pipeline,
        classes=class_names,
        test_mode=True))