test_detectors.py 7.17 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import copy
import numpy as np
import pytest
import random
import torch
from os.path import dirname, exists, join

from mmdet3d.core.bbox import DepthInstance3DBoxes, LiDARInstance3DBoxes
from mmdet3d.models.builder import build_detector


def _setup_seed(seed):
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True


def _get_config_directory():
    """Find the predefined detector config directory."""
    try:
        # Assume we are running in the source mmdetection repo
        repo_dpath = dirname(dirname(__file__))
    except NameError:
        # For IPython development when this __file__ is not defined
        import mmdet
        repo_dpath = dirname(dirname(mmdet.__file__))
    config_dpath = join(repo_dpath, 'configs')
    if not exists(config_dpath):
        raise Exception('Cannot find config path')
    return config_dpath


def _get_config_module(fname):
    """Load a configuration as a python module."""
    from mmcv import Config
    config_dpath = _get_config_directory()
    config_fpath = join(config_dpath, fname)
    config_mod = Config.fromfile(config_fpath)
    return config_mod


def _get_model_cfg(fname):
    """Grab configs necessary to create a model.

    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
    """
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)

    return model


def _get_detector_cfg(fname):
    """Grab configs necessary to create a detector.

    These are deep copied to allow for safe modification of parameters without
    influencing other tests.
    """
    import mmcv
    config = _get_config_module(fname)
    model = copy.deepcopy(config.model)
    train_cfg = mmcv.Config(copy.deepcopy(config.train_cfg))
    test_cfg = mmcv.Config(copy.deepcopy(config.test_cfg))

yinchimaoliang's avatar
yinchimaoliang committed
68
69
70
    model.update(train_cfg=train_cfg)
    model.update(test_cfg=test_cfg)
    return model
liyinhao's avatar
liyinhao committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206


def test_get_dynamic_voxelnet():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

    dynamic_voxelnet_cfg = _get_model_cfg(
        'dynamic_voxelization/dv_second_secfpn_6x8_80e_kitti-3d-car.py')
    self = build_detector(dynamic_voxelnet_cfg).cuda()
    points_0 = torch.rand([2010, 4], device='cuda')
    points_1 = torch.rand([2020, 4], device='cuda')
    points = [points_0, points_1]
    feats = self.extract_feat(points, None)
    assert feats[0].shape == torch.Size([2, 512, 200, 176])


def test_voxel_net():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    _setup_seed(0)
    voxel_net_cfg = _get_detector_cfg(
        'second/hv_second_secfpn_6x8_80e_kitti-3d-3class.py')

    self = build_detector(voxel_net_cfg).cuda()
    points_0 = torch.rand([2010, 4], device='cuda')
    points_1 = torch.rand([2020, 4], device='cuda')
    points = [points_0, points_1]
    gt_bbox_0 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bbox_1 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bboxes = [gt_bbox_0, gt_bbox_1]
    gt_labels_0 = torch.randint(0, 3, [10], device='cuda')
    gt_labels_1 = torch.randint(0, 3, [10], device='cuda')
    gt_labels = [gt_labels_0, gt_labels_1]
    img_meta_0 = dict(box_type_3d=LiDARInstance3DBoxes)
    img_meta_1 = dict(box_type_3d=LiDARInstance3DBoxes)
    img_metas = [img_meta_0, img_meta_1]

    # test forward_train
    losses = self.forward_train(points, img_metas, gt_bboxes, gt_labels)
    assert losses['loss_cls'][0] >= 0
    assert losses['loss_bbox'][0] >= 0
    assert losses['loss_dir'][0] >= 0

    # test simple_test
    results = self.simple_test(points, img_metas)
    boxes_3d = results['boxes_3d']
    scores_3d = results['scores_3d']
    labels_3d = results['labels_3d']
    assert boxes_3d.tensor.shape == (50, 7)
    assert scores_3d.shape == torch.Size([50])
    assert labels_3d.shape == torch.Size([50])


def test_vote_net():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')

    _setup_seed(0)
    vote_net_cfg = _get_detector_cfg(
        'votenet/votenet_16x8_sunrgbd-3d-10class.py')
    self = build_detector(vote_net_cfg).cuda()
    points_0 = torch.rand([2000, 4], device='cuda')
    points_1 = torch.rand([2000, 4], device='cuda')
    points = [points_0, points_1]
    img_meta_0 = dict(box_type_3d=DepthInstance3DBoxes)
    img_meta_1 = dict(box_type_3d=DepthInstance3DBoxes)
    img_metas = [img_meta_0, img_meta_1]
    gt_bbox_0 = DepthInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bbox_1 = DepthInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bboxes = [gt_bbox_0, gt_bbox_1]
    gt_labels_0 = torch.randint(0, 10, [10], device='cuda')
    gt_labels_1 = torch.randint(0, 10, [10], device='cuda')
    gt_labels = [gt_labels_0, gt_labels_1]

    # test forward_train
    losses = self.forward_train(points, img_metas, gt_bboxes, gt_labels)
    assert losses['vote_loss'] >= 0
    assert losses['objectness_loss'] >= 0
    assert losses['semantic_loss'] >= 0
    assert losses['center_loss'] >= 0
    assert losses['dir_class_loss'] >= 0
    assert losses['dir_res_loss'] >= 0
    assert losses['size_class_loss'] >= 0
    assert losses['size_res_loss'] >= 0

    # test simple_test
    results = self.simple_test(points, img_metas)
    boxes_3d = results['boxes_3d']
    scores_3d = results['scores_3d']
    labels_3d = results['labels_3d']
    assert boxes_3d.tensor.shape[0] >= 0
    assert boxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0


def test_parta2():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    _setup_seed(0)
    parta2 = _get_detector_cfg(
        'parta2/hv_PartA2_secfpn_2x8_cyclic_80e_kitti-3d-3class.py')
    self = build_detector(parta2).cuda()
    points_0 = torch.rand([2000, 4], device='cuda')
    points_1 = torch.rand([2000, 4], device='cuda')
    points = [points_0, points_1]
    img_meta_0 = dict(box_type_3d=LiDARInstance3DBoxes)
    img_meta_1 = dict(box_type_3d=LiDARInstance3DBoxes)
    img_metas = [img_meta_0, img_meta_1]
    gt_bbox_0 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bbox_1 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bboxes = [gt_bbox_0, gt_bbox_1]
    gt_labels_0 = torch.randint(0, 3, [10], device='cuda')
    gt_labels_1 = torch.randint(0, 3, [10], device='cuda')
    gt_labels = [gt_labels_0, gt_labels_1]

    # test_forward_train
    losses = self.forward_train(points, img_metas, gt_bboxes, gt_labels)
    assert losses['loss_rpn_cls'][0] >= 0
    assert losses['loss_rpn_bbox'][0] >= 0
    assert losses['loss_rpn_dir'][0] >= 0
    assert losses['loss_seg'] >= 0
    assert losses['loss_part'] >= 0
    assert losses['loss_cls'] >= 0
    assert losses['loss_bbox'] >= 0
    assert losses['loss_corner'] >= 0

    # test_simple_test
    results = self.simple_test(points, img_metas)
    boxes_3d = results['boxes_3d']
    scores_3d = results['scores_3d']
    labels_3d = results['labels_3d']
    assert boxes_3d.tensor.shape[0] >= 0
    assert boxes_3d.tensor.shape[1] == 7
    assert scores_3d.shape[0] >= 0
    assert labels_3d.shape[0] >= 0