h3dnet.py 6.51 KB
Newer Older
encore-zhou's avatar
encore-zhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import torch

from mmdet3d.core import merge_aug_bboxes_3d
from mmdet.models import DETECTORS
from .two_stage import TwoStage3DDetector


@DETECTORS.register_module()
class H3DNet(TwoStage3DDetector):
    r"""H3DNet model.

    Please refer to the `paper <https://arxiv.org/abs/2006.05682>`_
    """

    def __init__(self,
                 backbone,
                 neck=None,
                 rpn_head=None,
                 roi_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None):
        super(H3DNet, self).__init__(
            backbone=backbone,
            neck=neck,
            rpn_head=rpn_head,
            roi_head=roi_head,
            train_cfg=train_cfg,
            test_cfg=test_cfg,
            pretrained=pretrained)

    def forward_train(self,
                      points,
                      img_metas,
                      gt_bboxes_3d,
                      gt_labels_3d,
                      pts_semantic_mask=None,
                      pts_instance_mask=None,
                      gt_bboxes_ignore=None):
        """Forward of training.

        Args:
            points (list[torch.Tensor]): Points of each batch.
            img_metas (list): Image metas.
            gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): gt bboxes of each batch.
            gt_labels_3d (list[torch.Tensor]): gt class labels of each batch.
            pts_semantic_mask (None | list[torch.Tensor]): point-wise semantic
                label of each batch.
            pts_instance_mask (None | list[torch.Tensor]): point-wise instance
                label of each batch.
            gt_bboxes_ignore (None | list[torch.Tensor]): Specify
                which bounding.

        Returns:
            dict: Losses.
        """
        points_cat = torch.stack(points)

        feats_dict = self.extract_feat(points_cat)
        feats_dict['fp_xyz'] = [feats_dict['fp_xyz_net0'][-1]]
        feats_dict['fp_features'] = [feats_dict['hd_feature']]
        feats_dict['fp_indices'] = [feats_dict['fp_indices_net0'][-1]]

        losses = dict()
        if self.with_rpn:
            rpn_outs = self.rpn_head(feats_dict, self.train_cfg.rpn.sample_mod)
            feats_dict.update(rpn_outs)

            rpn_loss_inputs = (points, gt_bboxes_3d, gt_labels_3d,
                               pts_semantic_mask, pts_instance_mask, img_metas)
            rpn_losses = self.rpn_head.loss(
                rpn_outs,
                *rpn_loss_inputs,
                gt_bboxes_ignore=gt_bboxes_ignore,
                ret_target=True)
            feats_dict['targets'] = rpn_losses.pop('targets')
            losses.update(rpn_losses)

            # Generate rpn proposals
            proposal_cfg = self.train_cfg.get('rpn_proposal',
                                              self.test_cfg.rpn)
            proposal_inputs = (points, rpn_outs, img_metas)
            proposal_list = self.rpn_head.get_bboxes(
                *proposal_inputs, use_nms=proposal_cfg.use_nms)
            feats_dict['proposal_list'] = proposal_list
        else:
            raise NotImplementedError

        roi_losses = self.roi_head.forward_train(feats_dict, img_metas, points,
                                                 gt_bboxes_3d, gt_labels_3d,
                                                 pts_semantic_mask,
                                                 pts_instance_mask,
                                                 gt_bboxes_ignore)
        losses.update(roi_losses)

        return losses

    def simple_test(self, points, img_metas, imgs=None, rescale=False):
        """Forward of testing.

        Args:
            points (list[torch.Tensor]): Points of each sample.
            img_metas (list): Image metas.
            rescale (bool): Whether to rescale results.

        Returns:
            list: Predicted 3d boxes.
        """
        points_cat = torch.stack(points)

        feats_dict = self.extract_feat(points_cat)
        feats_dict['fp_xyz'] = [feats_dict['fp_xyz_net0'][-1]]
        feats_dict['fp_features'] = [feats_dict['hd_feature']]
        feats_dict['fp_indices'] = [feats_dict['fp_indices_net0'][-1]]

        if self.with_rpn:
            proposal_cfg = self.test_cfg.rpn
            rpn_outs = self.rpn_head(feats_dict, proposal_cfg.sample_mod)
            feats_dict.update(rpn_outs)
            # Generate rpn proposals
            proposal_list = self.rpn_head.get_bboxes(
                points, rpn_outs, img_metas, use_nms=proposal_cfg.use_nms)
            feats_dict['proposal_list'] = proposal_list
        else:
            raise NotImplementedError

        return self.roi_head.simple_test(
            feats_dict, img_metas, points_cat, rescale=rescale)

    def aug_test(self, points, img_metas, imgs=None, rescale=False):
        """Test with augmentation."""
        points_cat = [torch.stack(pts) for pts in points]
        feats_dict = self.extract_feats(points_cat, img_metas)
        for feat_dict in feats_dict:
            feat_dict['fp_xyz'] = [feat_dict['fp_xyz_net0'][-1]]
            feat_dict['fp_features'] = [feat_dict['hd_feature']]
            feat_dict['fp_indices'] = [feat_dict['fp_indices_net0'][-1]]

        # only support aug_test for one sample
        aug_bboxes = []
        for feat_dict, pts_cat, img_meta in zip(feats_dict, points_cat,
                                                img_metas):
            if self.with_rpn:
                proposal_cfg = self.test_cfg.rpn
                rpn_outs = self.rpn_head(feat_dict, proposal_cfg.sample_mod)
                feat_dict.update(rpn_outs)
                # Generate rpn proposals
                proposal_list = self.rpn_head.get_bboxes(
                    points, rpn_outs, img_metas, use_nms=proposal_cfg.use_nms)
                feat_dict['proposal_list'] = proposal_list
            else:
                raise NotImplementedError

            bbox_results = self.roi_head.simple_test(
                feat_dict,
                self.test_cfg.rcnn.sample_mod,
                img_meta,
                pts_cat,
                rescale=rescale)
            aug_bboxes.append(bbox_results)

        # after merging, bboxes will be rescaled to the original image size
        merged_bboxes = merge_aug_bboxes_3d(aug_bboxes, img_metas,
                                            self.bbox_head.test_cfg)

        return merged_bboxes

    def extract_feats(self, points, img_metas):
        """Extract features of multiple samples."""
        return [
            self.extract_feat(pts, img_meta)
            for pts, img_meta in zip(points, img_metas)
        ]