indoor_base_dataset.py 4.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
import copy

import mmcv
import numpy as np
import torch.utils.data as torch_data

from mmdet.datasets import DATASETS
from .pipelines import Compose


@DATASETS.register_module()
12
class IndoorBaseDataset(torch_data.Dataset):
13
14
15
16
17
18

    def __init__(self,
                 root_path,
                 ann_file,
                 pipeline=None,
                 training=False,
19
                 cat_ids=None,
20
21
22
23
                 test_mode=False,
                 with_label=True):
        super().__init__()
        self.root_path = root_path
24
        self.cat_ids = cat_ids if cat_ids else self.CLASSES
25
26
27
        self.test_mode = test_mode
        self.training = training
        self.mode = 'TRAIN' if self.training else 'TEST'
28
        self.label2cat = {i: cat_id for i, cat_id in enumerate(self.cat_ids)}
29
30
31
32
        mmcv.check_file_exist(ann_file)
        self.infos = mmcv.load(ann_file)

        # dataset config
33
        self.num_class = len(self.cat_ids)
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        self.pcd_limit_range = [0, -40, -3.0, 70.4, 40, 3.0]
        if pipeline is not None:
            self.pipeline = Compose(pipeline)
        self.with_label = with_label

    def __getitem__(self, idx):
        if self.test_mode:
            return self._prepare_test_data(idx)
        while True:
            data = self._prepare_train_data(idx)
            if data is None:
                idx = self._rand_another(idx)
                continue
            return data

    def _prepare_test_data(self, index):
        input_dict = self._get_sensor_data(index)
        example = self.pipeline(input_dict)
        return example

    def _prepare_train_data(self, index):
        input_dict = self._get_sensor_data(index)
        input_dict = self._train_pre_pipeline(input_dict)
        if input_dict is None:
            return None
        example = self.pipeline(input_dict)
        if len(example['gt_bboxes_3d']._data) == 0:
            return None
        return example

    def _train_pre_pipeline(self, input_dict):
        if len(input_dict['gt_bboxes_3d']) == 0:
            return None
        return input_dict

    def _get_sensor_data(self, index):
        info = self.infos[index]
        sample_idx = info['point_cloud']['lidar_idx']
        pts_filename = self._get_pts_filename(sample_idx)

        input_dict = dict(pts_filename=pts_filename)

        if self.with_label:
            annos = self._get_ann_info(index, sample_idx)
            input_dict.update(annos)

        return input_dict

    def _rand_another(self, idx):
        pool = np.where(self.flag == self.flag[idx])[0]
        return np.random.choice(pool)

    def _generate_annotations(self, output):
        """Generate Annotations.

        Transform results of the model to the form of the evaluation.

        Args:
            output (List): The output of the model.
        """
        result = []
        bs = len(output)
        for i in range(bs):
            pred_list_i = list()
            pred_boxes = output[i]
            box3d_depth = pred_boxes['box3d_lidar']
            if box3d_depth is not None:
                label_preds = pred_boxes['label_preds']
                scores = pred_boxes['scores'].detach().cpu().numpy()
                label_preds = label_preds.detach().cpu().numpy()
                num_proposal = box3d_depth.shape[0]
                for j in range(num_proposal):
                    bbox_lidar = box3d_depth[j]  # [7] in lidar
                    bbox_lidar_bottom = bbox_lidar.copy()
                    pred_list_i.append(
                        (label_preds[j], bbox_lidar_bottom, scores[j]))
                result.append(pred_list_i)
            else:
                result.append(pred_list_i)

        return result

    def format_results(self, outputs):
        results = []
        for output in outputs:
            result = self._generate_annotations(output)
            results.append(result)
        return results

    def evaluate(self, results, metric=None):
        """Evaluate.

        Evaluation in indoor protocol.

        Args:
            results (List): List of result.
            metric (List[float]): AP IoU thresholds.
        """
        results = self.format_results(results)
        from mmdet3d.core.evaluation import indoor_eval
        assert len(metric) > 0
        gt_annos = [copy.deepcopy(info['annos']) for info in self.infos]
liyinhao's avatar
liyinhao committed
136
137
        ret_dict = indoor_eval(gt_annos, results, metric, self.label2cat)
        return ret_dict
138
139
140

    def __len__(self):
        return len(self.infos)