test_losses.py 7.69 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
ZwwWayne's avatar
ZwwWayne committed
2
3
4
import random

import numpy as np
wuyuefeng's avatar
Votenet  
wuyuefeng committed
5
6
import pytest
import torch
7
from torch import nn as nn
wuyuefeng's avatar
Votenet  
wuyuefeng committed
8

9
from mmdet3d.models.builder import build_loss
10

wuyuefeng's avatar
Votenet  
wuyuefeng committed
11

ZwwWayne's avatar
ZwwWayne committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
def set_random_seed(seed, deterministic=False):
    """Set random seed.

    Args:
        seed (int): Seed to be used.
        deterministic (bool): Whether to set the deterministic option for
            CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
            to True and `torch.backends.cudnn.benchmark` to False.
            Default: False.
    """
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    if deterministic:
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False


wuyuefeng's avatar
Votenet  
wuyuefeng committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
def test_chamfer_disrance():
    from mmdet3d.models.losses import ChamferDistance, chamfer_distance

    with pytest.raises(AssertionError):
        # test invalid mode
        ChamferDistance(mode='smoothl1')
        # test invalid type of reduction
        ChamferDistance(mode='l2', reduction=None)

    self = ChamferDistance(
        mode='l2', reduction='sum', loss_src_weight=1.0, loss_dst_weight=1.0)
    source = torch.tensor([[[-0.9888, 0.9683, -0.8494],
                            [-6.4536, 4.5146,
                             1.6861], [2.0482, 5.6936, -1.4701],
                            [-0.5173, 5.6472, 2.1748],
                            [-2.8010, 5.4423, -1.2158],
                            [2.4018, 2.4389, -0.2403],
                            [-2.8811, 3.8486, 1.4750],
                            [-0.2031, 3.8969,
                             -1.5245], [1.3827, 4.9295, 1.1537],
                            [-2.6961, 2.2621, -1.0976]],
                           [[0.3692, 1.8409,
                             -1.4983], [1.9995, 6.3602, 0.1798],
                            [-2.1317, 4.6011,
                             -0.7028], [2.4158, 3.1482, 0.3169],
                            [-0.5836, 3.6250, -1.2650],
                            [-1.9862, 1.6182, -1.4901],
                            [2.5992, 1.2847, -0.8471],
                            [-0.3467, 5.3681, -1.4755],
                            [-0.8576, 3.3400, -1.7399],
                            [2.7447, 4.6349, 0.1994]]])

    target = torch.tensor([[[-0.4758, 1.0094, -0.8645],
                            [-0.3130, 0.8564, -0.9061],
                            [-0.1560, 2.0394, -0.8936],
                            [-0.3685, 1.6467, -0.8271],
                            [-0.2740, 2.2212, -0.7980]],
                           [[1.4856, 2.5299,
                             -1.0047], [2.3262, 3.3065, -0.9475],
                            [2.4593, 2.5870,
                             -0.9423], [0.0000, 0.0000, 0.0000],
                            [0.0000, 0.0000, 0.0000]]])

    loss_source, loss_target, indices1, indices2 = self(
        source, target, return_indices=True)

    assert torch.allclose(loss_source, torch.tensor(219.5936))
    assert torch.allclose(loss_target, torch.tensor(22.3705))
Wenwei Zhang's avatar
Wenwei Zhang committed
79
80
81
82
83
84
85
86
87

    expected_inds1 = [[0, 4, 4, 4, 4, 2, 4, 4, 4, 3],
                      [0, 1, 0, 1, 0, 4, 2, 0, 0, 1]]
    expected_inds2 = [[0, 4, 4, 4, 4, 2, 4, 4, 4, 3],
                      [0, 1, 0, 1, 0, 3, 2, 0, 0, 1]]
    assert (torch.equal(indices1, indices1.new_tensor(expected_inds1))
            or torch.equal(indices1, indices1.new_tensor(expected_inds2)))
    assert torch.equal(indices2,
                       indices2.new_tensor([[0, 0, 0, 0, 0], [0, 3, 6, 0, 0]]))
wuyuefeng's avatar
Votenet  
wuyuefeng committed
88
89
90
91
92
93

    loss_source, loss_target, indices1, indices2 = chamfer_distance(
        source, target, reduction='sum')

    assert torch.allclose(loss_source, torch.tensor(219.5936))
    assert torch.allclose(loss_target, torch.tensor(22.3705))
Wenwei Zhang's avatar
Wenwei Zhang committed
94
95
    assert (torch.equal(indices1, indices1.new_tensor(expected_inds1))
            or torch.equal(indices1, indices1.new_tensor(expected_inds2)))
wuyuefeng's avatar
Votenet  
wuyuefeng committed
96
97
    assert (indices2 == indices2.new_tensor([[0, 0, 0, 0, 0], [0, 3, 6, 0,
                                                               0]])).all()
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118


def test_paconv_regularization_loss():
    from mmdet3d.models.losses import PAConvRegularizationLoss
    from mmdet3d.ops import PAConv, PAConvCUDA

    class ToyModel(nn.Module):

        def __init__(self):
            super(ToyModel, self).__init__()

            self.paconvs = nn.ModuleList()
            self.paconvs.append(PAConv(8, 16, 8))
            self.paconvs.append(PAConv(8, 16, 8, kernel_input='identity'))
            self.paconvs.append(PAConvCUDA(8, 16, 8))

            self.conv1 = nn.Conv1d(3, 8, 1)

    set_random_seed(0, True)
    model = ToyModel()

119
    # reduction should be in ['none', 'mean', 'sum']
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    with pytest.raises(AssertionError):
        paconv_corr_loss = PAConvRegularizationLoss(reduction='l2')

    paconv_corr_loss = PAConvRegularizationLoss(reduction='mean')
    mean_corr_loss = paconv_corr_loss(model.modules())
    assert mean_corr_loss >= 0
    assert mean_corr_loss.requires_grad

    sum_corr_loss = paconv_corr_loss(model.modules(), reduction_override='sum')
    assert torch.allclose(sum_corr_loss, mean_corr_loss * 3)

    none_corr_loss = paconv_corr_loss(
        model.modules(), reduction_override='none')
    assert none_corr_loss.shape[0] == 3
    assert torch.allclose(none_corr_loss.mean(), mean_corr_loss)
135
136
137
138
139


def test_uncertain_smooth_l1_loss():
    from mmdet3d.models.losses import UncertainL1Loss, UncertainSmoothL1Loss

140
    # reduction should be in ['none', 'mean', 'sum']
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    with pytest.raises(AssertionError):
        uncertain_l1_loss = UncertainL1Loss(reduction='l2')
    with pytest.raises(AssertionError):
        uncertain_smooth_l1_loss = UncertainSmoothL1Loss(reduction='l2')

    pred = torch.tensor([1.5783, 0.5972, 1.4821, 0.9488])
    target = torch.tensor([1.0813, -0.3466, -1.1404, -0.9665])
    sigma = torch.tensor([-1.0053, 0.4710, -1.7784, -0.8603])

    # test uncertain l1 loss
    uncertain_l1_loss_cfg = dict(
        type='UncertainL1Loss', alpha=1.0, reduction='mean', loss_weight=1.0)
    uncertain_l1_loss = build_loss(uncertain_l1_loss_cfg)
    mean_l1_loss = uncertain_l1_loss(pred, target, sigma)
    expected_l1_loss = torch.tensor(4.7069)
    assert torch.allclose(mean_l1_loss, expected_l1_loss, atol=1e-4)

    # test uncertain smooth l1 loss
    uncertain_smooth_l1_loss_cfg = dict(
        type='UncertainSmoothL1Loss',
        alpha=1.0,
        beta=0.5,
        reduction='mean',
        loss_weight=1.0)
    uncertain_smooth_l1_loss = build_loss(uncertain_smooth_l1_loss_cfg)
    mean_smooth_l1_loss = uncertain_smooth_l1_loss(pred, target, sigma)
    expected_smooth_l1_loss = torch.tensor(3.9795)
    assert torch.allclose(
        mean_smooth_l1_loss, expected_smooth_l1_loss, atol=1e-4)
ChaimZhu's avatar
ChaimZhu committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195


def test_multibin_loss():
    from mmdet3d.models.losses import MultiBinLoss

    # reduction should be in ['none', 'mean', 'sum']
    with pytest.raises(AssertionError):
        multibin_loss = MultiBinLoss(reduction='l2')

    pred = torch.tensor([[
        0.81, 0.32, 0.78, 0.52, 0.24, 0.12, 0.32, 0.11, 1.20, 1.30, 0.20, 0.11,
        0.12, 0.11, 0.23, 0.31
    ],
                         [
                             0.02, 0.19, 0.78, 0.22, 0.31, 0.12, 0.22, 0.11,
                             1.20, 1.30, 0.45, 0.51, 0.12, 0.11, 0.13, 0.61
                         ]])
    target = torch.tensor([[1, 1, 0, 0, 2.14, 3.12, 0.68, -2.15],
                           [1, 1, 0, 0, 3.12, 3.12, 2.34, 1.23]])
    multibin_loss_cfg = dict(
        type='MultiBinLoss', reduction='none', loss_weight=1.0)
    multibin_loss = build_loss(multibin_loss_cfg)
    output_multibin_loss = multibin_loss(pred, target, num_dir_bins=4)
    expected_multibin_loss = torch.tensor(2.1120)
    assert torch.allclose(
        output_multibin_loss, expected_multibin_loss, atol=1e-4)