test_detectors.py 4.32 KB
Newer Older
1
2
3
4
5
6
7
8
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmengine.data import InstanceData

from mmdet3d.core import Det3DDataSample
from mmdet3d.core.bbox import LiDARInstance3DBoxes
from mmdet3d.registry import MODELS
jshilong's avatar
jshilong committed
9
from tests.utils.model_utils import _get_detector_cfg, _setup_seed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73


def test_voxel_net():
    import mmdet3d.models
    assert hasattr(mmdet3d.models, 'VoxelNet')
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    _setup_seed(0)
    voxel_net_cfg = _get_detector_cfg(
        'pointpillars/hv_pointpillars_secfpn_6x8_160e_kitti-3d-3class.py')
    model = MODELS.build(voxel_net_cfg).cuda()
    input_dict0 = dict(points=torch.rand([2010, 4], device='cuda'))
    input_dict1 = dict(points=torch.rand([2020, 4], device='cuda'))
    gt_instance_3d_0 = InstanceData()
    gt_instance_3d_0.bboxes_3d = LiDARInstance3DBoxes(
        torch.rand([20, 7], device='cuda'))
    gt_instance_3d_0.labels_3d = torch.randint(0, 3, [20], device='cuda')
    data_sample_0 = Det3DDataSample(
        metainfo=dict(box_type_3d=LiDARInstance3DBoxes))
    data_sample_0.gt_instances_3d = gt_instance_3d_0

    gt_instance_3d_1 = InstanceData()
    gt_instance_3d_1.bboxes_3d = LiDARInstance3DBoxes(
        torch.rand([50, 7], device='cuda'))
    gt_instance_3d_1.labels_3d = torch.randint(0, 3, [50], device='cuda')
    data_sample_1 = Det3DDataSample(
        metainfo=dict(box_type_3d=LiDARInstance3DBoxes))
    data_sample_1.gt_instances_3d = gt_instance_3d_1
    data = [dict(inputs=input_dict0, data_sample=data_sample_0)]

    # test simple_test
    with torch.no_grad():
        results = model.forward(data, return_loss=False)
    bboxes_3d = results[0].pred_instances_3d['bboxes_3d']
    scores_3d = results[0].pred_instances_3d['scores_3d']
    labels_3d = results[0].pred_instances_3d['labels_3d']
    assert bboxes_3d.tensor.shape == (50, 7)
    assert scores_3d.shape == torch.Size([50])
    assert labels_3d.shape == torch.Size([50])

    # test forward_train
    data = [
        dict(inputs=input_dict0, data_sample=data_sample_0),
        dict(inputs=input_dict1, data_sample=data_sample_1)
    ]
    losses = model.forward(data, return_loss=True)
    assert losses['log_vars']['loss_cls'] >= 0
    assert losses['log_vars']['loss_bbox'] >= 0
    assert losses['log_vars']['loss_dir'] >= 0
    assert losses['log_vars']['loss'] >= 0

    # test_aug_test
    metainfo = {
        'pcd_scale_factor': 1,
        'pcd_horizontal_flip': 1,
        'pcd_vertical_flip': 1,
        'box_type_3d': LiDARInstance3DBoxes
    }
    data_sample_0.set_metainfo(metainfo)
    data_sample_1.set_metainfo(metainfo)
    data = [
        dict(inputs=input_dict0, data_sample=data_sample_0),
        dict(inputs=input_dict1, data_sample=data_sample_1)
    ]
jshilong's avatar
jshilong committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    model.forward(data, return_loss=False)


def test_sassd():
    if not torch.cuda.is_available():
        pytest.skip('test requires GPU and torch+cuda')
    _setup_seed(0)
    sassd_cfg = _get_detector_cfg('sassd/sassd_6x8_80e_kitti-3d-3class.py')

    self = build_detector(sassd_cfg).cuda()
    points_0 = torch.rand([2010, 4], device='cuda')
    points_1 = torch.rand([2020, 4], device='cuda')
    points = [points_0, points_1]
    gt_bbox_0 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bbox_1 = LiDARInstance3DBoxes(torch.rand([10, 7], device='cuda'))
    gt_bboxes = [gt_bbox_0, gt_bbox_1]
    gt_labels_0 = torch.randint(0, 3, [10], device='cuda')
    gt_labels_1 = torch.randint(0, 3, [10], device='cuda')
    gt_labels = [gt_labels_0, gt_labels_1]
    img_meta_0 = dict(box_type_3d=LiDARInstance3DBoxes)
    img_meta_1 = dict(box_type_3d=LiDARInstance3DBoxes)
    img_metas = [img_meta_0, img_meta_1]

    # test forward_train
    losses = self.forward_train(points, img_metas, gt_bboxes, gt_labels)
    assert losses['loss_cls'][0] >= 0
    assert losses['loss_bbox'][0] >= 0
    assert losses['loss_dir'][0] >= 0
    assert losses['aux_loss_cls'][0] >= 0
    assert losses['aux_loss_reg'][0] >= 0

    # test simple_test
    with torch.no_grad():
        results = self.simple_test(points, img_metas)
    boxes_3d = results[0]['boxes_3d']
    scores_3d = results[0]['scores_3d']
    labels_3d = results[0]['labels_3d']
    assert boxes_3d.tensor.shape == (50, 7)
    assert scores_3d.shape == torch.Size([50])
    assert labels_3d.shape == torch.Size([50])