"src/targets/vscode:/vscode.git/clone" did not exist on "d18d38c4a4a2885fd43e9d70cea9da7c0b4605fd"
scannet-3d-18class.py 3.54 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
3
# dataset settings
dataset_type = 'ScanNetDataset'
data_root = './data/scannet/'
jshilong's avatar
jshilong committed
4
5
6
7
8
9

metainfo = dict(
    CLASSES=('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
             'bookshelf', 'picture', 'counter', 'desk', 'curtain',
             'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
             'garbagebin'))
liyinhao's avatar
liyinhao committed
10
11
12
train_pipeline = [
    dict(
        type='LoadPointsFromFile',
13
        coord_type='DEPTH',
liyinhao's avatar
liyinhao committed
14
15
16
17
18
19
20
21
22
        shift_height=True,
        load_dim=6,
        use_dim=[0, 1, 2]),
    dict(
        type='LoadAnnotations3D',
        with_bbox_3d=True,
        with_label_3d=True,
        with_mask_3d=True,
        with_seg_3d=True),
23
    dict(type='GlobalAlignment', rotation_axis=2),
liyinhao's avatar
liyinhao committed
24
25
26
    dict(
        type='PointSegClassMapping',
        valid_cat_ids=(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34,
27
28
                       36, 39),
        max_cat_id=40),
29
    dict(type='PointSample', num_points=40000),
liyinhao's avatar
liyinhao committed
30
    dict(
wuyuefeng's avatar
wuyuefeng committed
31
32
33
34
35
36
37
38
39
        type='RandomFlip3D',
        sync_2d=False,
        flip_ratio_bev_horizontal=0.5,
        flip_ratio_bev_vertical=0.5),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.087266, 0.087266],
        scale_ratio_range=[1.0, 1.0],
        shift_height=True),
liyinhao's avatar
liyinhao committed
40
    dict(
jshilong's avatar
jshilong committed
41
        type='Pack3DDetInputs',
liyinhao's avatar
liyinhao committed
42
43
44
45
46
47
48
49
        keys=[
            'points', 'gt_bboxes_3d', 'gt_labels_3d', 'pts_semantic_mask',
            'pts_instance_mask'
        ])
]
test_pipeline = [
    dict(
        type='LoadPointsFromFile',
50
        coord_type='DEPTH',
liyinhao's avatar
liyinhao committed
51
52
53
        shift_height=True,
        load_dim=6,
        use_dim=[0, 1, 2]),
54
    dict(type='GlobalAlignment', rotation_axis=2),
zhangwenwei's avatar
zhangwenwei committed
55
56
57
58
59
60
61
62
63
64
65
    dict(
        type='MultiScaleFlipAug3D',
        img_scale=(1333, 800),
        pts_scale_ratio=1,
        flip=False,
        transforms=[
            dict(
                type='GlobalRotScaleTrans',
                rot_range=[0, 0],
                scale_ratio_range=[1., 1.],
                translation_std=[0, 0, 0]),
wuyuefeng's avatar
wuyuefeng committed
66
67
68
69
70
            dict(
                type='RandomFlip3D',
                sync_2d=False,
                flip_ratio_bev_horizontal=0.5,
                flip_ratio_bev_vertical=0.5),
71
            dict(type='PointSample', num_points=40000),
jshilong's avatar
jshilong committed
72
73
        ]),
    dict(type='Pack3DDetInputs', keys=['points'])
74
]
liyinhao's avatar
liyinhao committed
75

jshilong's avatar
jshilong committed
76
77
78
79
80
train_dataloader = dict(
    batch_size=8,
    num_workers=4,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=dict(
liyinhao's avatar
liyinhao committed
81
82
83
84
85
        type='RepeatDataset',
        times=5,
        dataset=dict(
            type=dataset_type,
            data_root=data_root,
jshilong's avatar
jshilong committed
86
            ann_file='scannet_infos_train.pkl',
liyinhao's avatar
liyinhao committed
87
88
            pipeline=train_pipeline,
            filter_empty_gt=False,
jshilong's avatar
jshilong committed
89
            metainfo=metainfo,
wuyuefeng's avatar
Demo  
wuyuefeng committed
90
91
            # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
            # and box_type_3d='Depth' in sunrgbd and scannet dataset.
jshilong's avatar
jshilong committed
92
93
94
95
96
97
98
            box_type_3d='Depth')))

val_dataloader = dict(
    batch_size=1,
    num_workers=1,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
liyinhao's avatar
liyinhao committed
99
100
        type=dataset_type,
        data_root=data_root,
jshilong's avatar
jshilong committed
101
        ann_file='scannet_infos_val.pkl',
liyinhao's avatar
liyinhao committed
102
        pipeline=test_pipeline,
jshilong's avatar
jshilong committed
103
        metainfo=metainfo,
wuyuefeng's avatar
Demo  
wuyuefeng committed
104
        test_mode=True,
jshilong's avatar
jshilong committed
105
106
107
108
109
110
        box_type_3d='Depth'))
test_dataloader = dict(
    batch_size=1,
    num_workers=1,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
liyinhao's avatar
liyinhao committed
111
112
        type=dataset_type,
        data_root=data_root,
jshilong's avatar
jshilong committed
113
        ann_file='scannet_infos_val.pkl',
liyinhao's avatar
liyinhao committed
114
        pipeline=test_pipeline,
jshilong's avatar
jshilong committed
115
        metainfo=metainfo,
wuyuefeng's avatar
Demo  
wuyuefeng committed
116
117
        test_mode=True,
        box_type_3d='Depth'))
jshilong's avatar
jshilong committed
118
119
val_evaluator = dict(type='IndoorMetric')
test_evaluator = val_evaluator