sunrgbd_data_utils.py 7.66 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os

import cv2
import numpy as np
import scipy.io as sio


def random_sampling(pc, num_sample, replace=None, return_choices=False):
    """ Input is NxC, output is num_samplexC
    """
    if replace is None:
        replace = (pc.shape[0] < num_sample)
    choices = np.random.choice(pc.shape[0], num_sample, replace=replace)
    if return_choices:
        return pc[choices], choices
    else:
        return pc[choices]


class SUNObject3d(object):

    def __init__(self, line):
        data = line.split(' ')
        data[1:] = [float(x) for x in data[1:]]
        self.classname = data[0]
        self.xmin = data[1]
        self.ymin = data[2]
        self.xmax = data[1] + data[3]
        self.ymax = data[2] + data[4]
        self.box2d = np.array([self.xmin, self.ymin, self.xmax, self.ymax])
        self.centroid = np.array([data[5], data[6], data[7]])
        self.w = data[8]
        self.l = data[9]  # noqa: E741
        self.h = data[10]
        self.orientation = np.zeros((3, ))
        self.orientation[0] = data[11]
        self.orientation[1] = data[12]
        self.heading_angle = -1 * np.arctan2(self.orientation[1],
                                             self.orientation[0])
        self.box3d = np.concatenate([
            self.centroid,
            np.array([self.l * 2, self.w * 2, self.h * 2, self.heading_angle])
        ])


class SUNRGBDObject(object):
    ''' Load and parse object data '''

    def __init__(self, root_path, split='train', use_v1=False):
        self.root_dir = root_path
        self.split = split
        self.split_dir = os.path.join(root_path)
53
54
55
56
57
58
59
60
        self.classes = [
            'bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser',
            'night_stand', 'bookshelf', 'bathtub'
        ]
        self.cat2label = {cat: self.classes.index(cat) for cat in self.classes}
        self.label2cat = {
            label: self.classes[label]
            for label in len(self.classes)
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
        }
        assert split in ['train', 'val', 'test']
        split_dir = os.path.join(self.root_dir, '%s_data_idx.txt' % split)
        self.sample_id_list = [
            int(x.strip()) for x in open(split_dir).readlines()
        ] if os.path.exists(split_dir) else None

        self.image_dir = os.path.join(self.split_dir, 'image')
        self.calib_dir = os.path.join(self.split_dir, 'calib')
        self.depth_dir = os.path.join(self.split_dir, 'depth')
        if use_v1:
            self.label_dir = os.path.join(self.split_dir, 'label_v1')
        else:
            self.label_dir = os.path.join(self.split_dir, 'label')

    def __len__(self):
        return len(self.sample_id_list)

    def get_image(self, idx):
        img_filename = os.path.join(self.image_dir, '%06d.jpg' % (idx))
        return cv2.imread(img_filename)

    def get_image_shape(self, idx):
        image = self.get_image(idx)
        return np.array(image.shape[:2], dtype=np.int32)

    def get_depth(self, idx):
        depth_filename = os.path.join(self.depth_dir, '%06d.mat' % (idx))
        depth = sio.loadmat(depth_filename)['instance']
        return depth

    def get_calibration(self, idx):
        calib_filepath = os.path.join(self.calib_dir, '%06d.txt' % (idx))
        lines = [line.rstrip() for line in open(calib_filepath)]
        Rt = np.array([float(x) for x in lines[0].split(' ')])
        Rt = np.reshape(Rt, (3, 3), order='F')
        K = np.array([float(x) for x in lines[1].split(' ')])
        return K, Rt

    def get_label_objects(self, idx):
        label_filename = os.path.join(self.label_dir, '%06d.txt' % (idx))
        lines = [line.rstrip() for line in open(label_filename)]
        objects = [SUNObject3d(line) for line in lines]
        return objects

    def get_sunrgbd_infos(self,
                          num_workers=4,
                          has_label=True,
                          sample_id_list=None):
        import concurrent.futures as futures

        def process_single_scene(sample_idx):
            print('%s sample_idx: %s' % (self.split, sample_idx))
            # convert depth to points
            SAMPLE_NUM = 50000
            pc_upright_depth = self.get_depth(sample_idx)
117
            # TODO : sample points in loading process and test
118
119
120
121
122
123
124
125
126
            pc_upright_depth_subsampled = random_sampling(
                pc_upright_depth, SAMPLE_NUM)
            np.savez_compressed(
                os.path.join(self.root_dir, 'lidar', '%06d.npz' % sample_idx),
                pc=pc_upright_depth_subsampled)

            info = dict()
            pc_info = {'num_features': 6, 'lidar_idx': sample_idx}
            info['point_cloud'] = pc_info
127
128
            img_name = os.path.join(self.image_dir, '%06d.jpg' % (sample_idx))
            img_path = os.path.join(self.image_dir, img_name)
129
130
            image_info = {
                'image_idx': sample_idx,
131
132
                'image_shape': self.get_image_shape(sample_idx),
                'image_path': img_path
133
134
135
136
137
138
139
140
141
142
143
144
            }
            info['image'] = image_info

            K, Rt = self.get_calibration(sample_idx)
            calib_info = {'K': K, 'Rt': Rt}
            info['calib'] = calib_info

            if has_label:
                obj_list = self.get_label_objects(sample_idx)
                annotations = {}
                annotations['gt_num'] = len([
                    obj.classname for obj in obj_list
145
                    if obj.classname in self.cat2label.keys()
146
147
148
149
                ])
                if annotations['gt_num'] != 0:
                    annotations['name'] = np.array([
                        obj.classname for obj in obj_list
150
                        if obj.classname in self.cat2label.keys()
151
152
153
                    ])
                    annotations['bbox'] = np.concatenate([
                        obj.box2d.reshape(1, 4) for obj in obj_list
154
                        if obj.classname in self.cat2label.keys()
155
156
157
158
                    ],
                                                         axis=0)
                    annotations['location'] = np.concatenate([
                        obj.centroid.reshape(1, 3) for obj in obj_list
159
                        if obj.classname in self.cat2label.keys()
160
161
162
163
                    ],
                                                             axis=0)
                    annotations['dimensions'] = 2 * np.array([
                        [obj.l, obj.h, obj.w] for obj in obj_list
164
                        if obj.classname in self.cat2label.keys()
165
166
167
                    ])  # lhw(depth) format
                    annotations['rotation_y'] = np.array([
                        obj.heading_angle for obj in obj_list
168
                        if obj.classname in self.cat2label.keys()
169
170
171
172
                    ])
                    annotations['index'] = np.arange(
                        len(obj_list), dtype=np.int32)
                    annotations['class'] = np.array([
173
174
                        self.cat2label[obj.classname] for obj in obj_list
                        if obj.classname in self.cat2label.keys()
175
176
177
178
                    ])
                    annotations['gt_boxes_upright_depth'] = np.stack(
                        [
                            obj.box3d for obj in obj_list
179
                            if obj.classname in self.cat2label.keys()
180
181
182
183
184
185
186
187
188
189
190
191
192
                        ],
                        axis=0)  # (K,8)
                info['annos'] = annotations
            return info

        lidar_save_dir = os.path.join(self.root_dir, 'lidar')
        if not os.path.exists(lidar_save_dir):
            os.mkdir(lidar_save_dir)
        sample_id_list = sample_id_list if \
            sample_id_list is not None else self.sample_id_list
        with futures.ThreadPoolExecutor(num_workers) as executor:
            infos = executor.map(process_single_scene, sample_id_list)
        return list(infos)