test_instance_seg_metric.py 3.21 KB
Newer Older
1
2
3
4
5
6
7
# Copyright (c) OpenMMLab. All rights reserved.
import unittest

import numpy as np
import torch
from mmengine.data import BaseDataElement

zhangshilong's avatar
zhangshilong committed
8
9
from mmdet3d.evaluation.metrics import InstanceSegMetric
from mmdet3d.structures import Det3DDataSample, PointData
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84


class TestInstanceSegMetric(unittest.TestCase):

    def _demo_mm_inputs(self):
        """Create a superset of inputs needed to run test or train batches."""
        packed_inputs = []
        results_dict = dict()
        mm_inputs = dict()
        n_points = 3300
        gt_labels = [0, 0, 0, 0, 0, 0, 14, 14, 2, 1]
        gt_instance_mask = np.ones(n_points, dtype=np.int) * -1
        gt_semantic_mask = np.ones(n_points, dtype=np.int) * -1
        for i, gt_label in enumerate(gt_labels):
            begin = i * 300
            end = begin + 300
            gt_instance_mask[begin:end] = i
            gt_semantic_mask[begin:end] = gt_label

        results_dict['pts_instance_mask'] = torch.tensor(gt_instance_mask)
        results_dict['pts_semantic_mask'] = torch.tensor(gt_semantic_mask)

        data_sample = Det3DDataSample()
        data_sample.gt_pts_seg = PointData(**results_dict)
        mm_inputs['data_sample'] = data_sample.to_dict()
        packed_inputs.append(mm_inputs)

        return packed_inputs

    def _demo_mm_model_output(self):
        """Create a superset of inputs needed to run test or train batches."""
        results_dict = dict()
        n_points = 3300
        gt_labels = [0, 0, 0, 0, 0, 0, 14, 14, 2, 1]
        pred_instance_mask = np.ones(n_points, dtype=np.int) * -1
        labels = []
        scores = []
        for i, gt_label in enumerate(gt_labels):
            begin = i * 300
            end = begin + 300
            pred_instance_mask[begin:end] = i
            labels.append(gt_label)
            scores.append(.99)

        results_dict['pts_instance_mask'] = torch.tensor(pred_instance_mask)
        results_dict['instance_labels'] = torch.tensor(labels)
        results_dict['instance_scores'] = torch.tensor(scores)
        data_sample = Det3DDataSample()
        data_sample.pred_pts_seg = PointData(**results_dict)
        batch_data_samples = [data_sample]

        predictions = []
        for pred in batch_data_samples:
            if isinstance(pred, BaseDataElement):
                pred = pred.to_dict()
            predictions.append(pred)

        return predictions

    def test_evaluate(self):
        data_batch = self._demo_mm_inputs()
        predictions = self._demo_mm_model_output()
        valid_class_ids = (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33,
                           34, 36, 39)
        class_labels = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
                        'window', 'bookshelf', 'picture', 'counter', 'desk',
                        'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                        'sink', 'bathtub', 'garbagebin')
        dataset_meta = dict(
            VALID_CLASS_IDS=valid_class_ids, CLASSES=class_labels)
        instance_seg_metric = InstanceSegMetric()
        instance_seg_metric.dataset_meta = dataset_meta
        instance_seg_metric.process(data_batch, predictions)
        res = instance_seg_metric.evaluate(6)
        self.assertIsInstance(res, dict)