test_indoor_metric.py 2.68 KB
Newer Older
jshilong's avatar
jshilong committed
1
2
3
4
5
6
7
import unittest
from io import StringIO
from unittest.mock import patch

import numpy as np
import torch

zhangshilong's avatar
zhangshilong committed
8
9
from mmdet3d.evaluation.metrics import IndoorMetric
from mmdet3d.structures import DepthInstance3DBoxes
jshilong's avatar
jshilong committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66


class TestIndoorMetric(unittest.TestCase):

    @patch('sys.stdout', new_callable=StringIO)
    def test_process(self, stdout):
        indoor_metric = IndoorMetric()

        dummy_batch = dict(data_sample=dict())

        eval_ann_info = {
            'gt_bboxes_3d':
            DepthInstance3DBoxes(
                torch.tensor([
                    [2.3578, 1.7841, -0.0987, 0.5532, 0.4948, 0.6474, 0.0000],
                    [-0.2773, -2.1403, 0.0615, 0.4786, 0.5170, 0.3842, 0.0000],
                    [0.0259, -2.7954, -0.0157, 0.3869, 0.4361, 0.5229, 0.0000],
                    [-2.3968, 1.1040, 0.0945, 2.5563, 1.5989, 0.9322, 0.0000],
                    [
                        -0.3173, -2.7770, -0.0134, 0.5473, 0.8569, 0.5577,
                        0.0000
                    ],
                    [-2.4882, -1.4437, 0.0987, 1.2199, 0.4859, 0.6461, 0.0000],
                    [-3.4702, -0.1315, 0.2463, 1.3137, 0.8022, 0.4765, 0.0000],
                    [1.9786, 3.0196, -0.0934, 1.6129, 0.5834, 1.4662, 0.0000],
                    [2.3835, 2.2691, -0.1376, 0.5197, 0.5099, 0.6896, 0.0000],
                    [2.5986, -0.5313, 1.4269, 0.0696, 0.2933, 0.3104, 0.0000],
                    [0.4555, -3.1278, -0.0637, 2.0247, 0.1292, 0.2419, 0.0000],
                    [0.4655, -3.1941, 0.3769, 2.1132, 0.3536, 1.9803, 0.0000]
                ])),
            'gt_labels_3d':
            np.array([2, 2, 2, 3, 4, 17, 4, 7, 2, 8, 17, 11])
        }
        dummy_batch['data_sample']['eval_ann_info'] = eval_ann_info

        pred_instances_3d = dict()
        pred_instances_3d['scores_3d'] = torch.ones(
            len(eval_ann_info['gt_bboxes_3d']))
        pred_instances_3d['bboxes_3d'] = eval_ann_info['gt_bboxes_3d']
        pred_instances_3d['labels_3d'] = torch.Tensor(
            eval_ann_info['gt_labels_3d'])
        pred_dict = dict()
        pred_dict['pred_instances_3d'] = pred_instances_3d
        indoor_metric.dataset_meta = {
            'CLASSES': ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door',
                        'window', 'bookshelf', 'picture', 'counter', 'desk',
                        'curtain', 'refrigerator', 'showercurtrain', 'toilet',
                        'sink', 'bathtub', 'garbagebin'),
            'box_type_3d':
            'Depth',
        }
        indoor_metric.process([dummy_batch], [pred_dict])

        eval_results = indoor_metric.evaluate(1)
        for v in eval_results.values():
            # map == 1
            self.assertEqual(1, v)