test_scannet_dataset.py 7.79 KB
Newer Older
jshilong's avatar
jshilong committed
1
2
3
4
5
6
7
# Copyright (c) OpenMMLab. All rights reserved.
import unittest

import numpy as np
import torch
from mmengine.testing import assert_allclose

ZCMax's avatar
ZCMax committed
8
from mmdet3d.datasets import ScanNetDataset, ScanNetSegDataset
zhangshilong's avatar
zhangshilong committed
9
from mmdet3d.structures import DepthInstance3DBoxes
ZCMax's avatar
ZCMax committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from mmdet3d.utils import register_all_modules


def _generate_scannet_seg_dataset_config():
    data_root = './tests/data/scannet/'
    ann_file = 'scannet_infos.pkl'
    classes = ('wall', 'floor', 'cabinet', 'bed', 'chair', 'sofa', 'table',
               'door', 'window', 'bookshelf', 'picture', 'counter', 'desk',
               'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink',
               'bathtub', 'otherfurniture')
    palette = [
        [174, 199, 232],
        [152, 223, 138],
        [31, 119, 180],
        [255, 187, 120],
        [188, 189, 34],
        [140, 86, 75],
        [255, 152, 150],
        [214, 39, 40],
        [197, 176, 213],
        [148, 103, 189],
        [196, 156, 148],
        [23, 190, 207],
        [247, 182, 210],
        [219, 219, 141],
        [255, 127, 14],
        [158, 218, 229],
        [44, 160, 44],
        [112, 128, 144],
        [227, 119, 194],
        [82, 84, 163],
    ]
    scene_idxs = [0 for _ in range(20)]
    modality = dict(use_lidar=True, use_camera=False)
    pipeline = [
        dict(
            type='LoadPointsFromFile',
            coord_type='DEPTH',
            shift_height=False,
            use_color=True,
            load_dim=6,
            use_dim=[0, 1, 2, 3, 4, 5]),
        dict(
            type='LoadAnnotations3D',
            with_bbox_3d=False,
            with_label_3d=False,
            with_mask_3d=False,
            with_seg_3d=True),
        dict(type='PointSegClassMapping'),
        dict(
            type='IndoorPatchPointSample',
            num_points=5,
            block_size=1.5,
            ignore_index=len(classes),
            use_normalized_coord=True,
            enlarge_size=0.2,
            min_unique_num=None),
        dict(type='NormalizePointsColor', color_mean=None),
        dict(type='Pack3DDetInputs', keys=['points', 'pts_semantic_mask'])
    ]

    data_prefix = dict(
        pts='points',
        pts_instance_mask='instance_mask',
        pts_semantic_mask='semantic_mask')
    return (data_root, ann_file, classes, palette, scene_idxs, data_prefix,
            pipeline, modality)
jshilong's avatar
jshilong committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161


def _generate_scannet_dataset_config():
    data_root = 'tests/data/scannet'
    ann_file = 'scannet_infos.pkl'
    classes = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window',
               'bookshelf', 'picture', 'counter', 'desk', 'curtain',
               'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub',
               'garbagebin')
    # TODO add pipline
    from mmcv.transforms.base import BaseTransform
    from mmengine.registry import TRANSFORMS
    if 'Identity' not in TRANSFORMS:

        @TRANSFORMS.register_module()
        class Identity(BaseTransform):

            def transform(self, info):
                if 'ann_info' in info:
                    info['gt_labels_3d'] = info['ann_info']['gt_labels_3d']
                return info

    modality = dict(use_lidar=True, use_camera=False)
    pipeline = [
        dict(type='Identity'),
    ]
    data_prefix = dict(
        pts='points',
        pts_instance_mask='instance_mask',
        pts_semantic_mask='semantic_mask')
    return data_root, ann_file, classes, data_prefix, pipeline, modality


class TestScanNetDataset(unittest.TestCase):

    def test_scannet(self):
        np.random.seed(0)
        data_root, ann_file, classes, data_prefix, \
            pipeline, modality, = _generate_scannet_dataset_config()

        scannet_dataset = ScanNetDataset(
            data_root,
            ann_file,
            data_prefix=data_prefix,
            pipeline=pipeline,
            metainfo=dict(CLASSES=classes),
            modality=modality)

        scannet_dataset.prepare_data(0)
        input_dict = scannet_dataset.get_data_info(0)
        scannet_dataset[0]
        # assert the the path should contains data_prefix and data_root
        self.assertIn(data_prefix['pts'],
                      input_dict['lidar_points']['lidar_path'])
        self.assertIn(data_root, input_dict['lidar_points']['lidar_path'])

        ann_info = scannet_dataset.parse_ann_info(input_dict)

        # assert the keys in ann_info and the type
        except_label = np.array([
            6, 6, 4, 9, 11, 11, 10, 0, 15, 17, 17, 17, 3, 12, 4, 4, 14, 1, 0,
            0, 0, 0, 0, 0, 5, 5, 5
        ])

        self.assertEqual(ann_info['gt_labels_3d'].dtype, np.int64)
        assert_allclose(ann_info['gt_labels_3d'], except_label)
        self.assertIsInstance(ann_info['gt_bboxes_3d'], DepthInstance3DBoxes)
        assert len(ann_info['gt_bboxes_3d']) == 27
        assert torch.allclose(ann_info['gt_bboxes_3d'].tensor.sum(),
                              torch.tensor([107.7353]))

        no_class_scannet_dataset = ScanNetDataset(
            data_root, ann_file, metainfo=dict(CLASSES=['cabinet']))

        input_dict = no_class_scannet_dataset.get_data_info(0)
        ann_info = no_class_scannet_dataset.parse_ann_info(input_dict)

        # assert the keys in ann_info and the type
        self.assertIn('gt_labels_3d', ann_info)
        # assert mapping to -1 or 1
        assert (ann_info['gt_labels_3d'] <= 0).all()
        self.assertEqual(ann_info['gt_labels_3d'].dtype, np.int64)
        # all instance have been filtered by classes
        self.assertEqual(len(ann_info['gt_labels_3d']), 27)
        self.assertEqual(len(no_class_scannet_dataset.metainfo['CLASSES']), 1)
ZCMax's avatar
ZCMax committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212

    def test_scannet_seg(self):
        np.random.seed(0)
        data_root, ann_file, classes, palette, scene_idxs, data_prefix, \
            pipeline, modality, = _generate_scannet_seg_dataset_config()

        register_all_modules()
        scannet_seg_dataset = ScanNetSegDataset(
            data_root,
            ann_file,
            metainfo=dict(CLASSES=classes, PALETTE=palette),
            data_prefix=data_prefix,
            pipeline=pipeline,
            modality=modality,
            scene_idxs=scene_idxs)

        input_dict = scannet_seg_dataset.prepare_data(0)

        points = input_dict['inputs']['points']
        data_sample = input_dict['data_sample']
        pts_semantic_mask = data_sample.gt_pts_seg.pts_semantic_mask

        expected_points = torch.tensor([[
            0.0000, 0.0000, 1.2427, 0.6118, 0.5529, 0.4471, -0.6462, -1.0046,
            0.4280
        ],
                                        [
                                            0.1553, -0.0074, 1.6077, 0.5882,
                                            0.6157, 0.5569, -0.6001, -1.0068,
                                            0.5537
                                        ],
                                        [
                                            0.1518, 0.6016, 0.6548, 0.1490,
                                            0.1059, 0.0431, -0.6012, -0.8309,
                                            0.2255
                                        ],
                                        [
                                            -0.7494, 0.1033, 0.6756, 0.5216,
                                            0.4353, 0.3333, -0.8687, -0.9748,
                                            0.2327
                                        ],
                                        [
                                            -0.6836, -0.0203, 0.5884, 0.5765,
                                            0.5020, 0.4510, -0.8491, -1.0105,
                                            0.2027
                                        ]])
        expected_pts_semantic_mask = np.array([13, 13, 12, 2, 0])

        assert torch.allclose(points, expected_points, 1e-2)
        self.assertTrue(
            (pts_semantic_mask.numpy() == expected_pts_semantic_mask).all())