encoder_decoder.py 21.8 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
from typing import List

4
5
import numpy as np
import torch
6
from torch import Tensor
7
8
9
from torch import nn as nn
from torch.nn import functional as F

10
from mmdet3d.registry import MODELS
zhangshilong's avatar
zhangshilong committed
11
12
13
from mmdet3d.utils import ConfigType, OptConfigType, OptMultiConfig
from ...structures.det3d_data_sample import OptSampleList, SampleList
from ..utils import add_prefix
14
15
16
from .base import Base3DSegmentor


17
@MODELS.register_module()
18
19
20
21
22
class EncoderDecoder3D(Base3DSegmentor):
    """3D Encoder Decoder segmentors.

    EncoderDecoder typically consists of backbone, decode_head, auxiliary_head.
    Note that auxiliary_head is only used for deep supervision during training,
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
    which could be dumped during inference.

    1. The ``loss`` method is used to calculate the loss of model,
    which includes two steps: (1) Extracts features to obtain the feature maps
    (2) Call the decode head loss function to forward decode head model and
    calculate losses.

    .. code:: text

     loss(): extract_feat() -> _decode_head_forward_train() -> _auxiliary_head_forward_train (optional)
     _decode_head_forward_train(): decode_head.loss()
     _auxiliary_head_forward_train(): auxiliary_head.loss (optional)

    2. The ``predict`` method is used to predict segmentation results,
    which includes two steps: (1) Run inference function to obtain the list of
    seg_logits (2) Call post-processing function to obtain list of
    ``SegDataSampel`` including ``pred_sem_seg`` and ``seg_logits``.

    .. code:: text

     predict(): inference() -> postprocess_result()
     infercen(): whole_inference()/slide_inference()
     whole_inference()/slide_inference(): encoder_decoder()
     encoder_decoder(): extract_feat() -> decode_head.predict()

    4 The ``_forward`` method is used to output the tensor by running the model,
    which includes two steps: (1) Extracts features to obtain the feature maps
    (2)Call the decode head forward function to forward decode head model.

    .. code:: text

     _forward(): extract_feat() -> _decode_head.forward()

    Args:

        backbone (ConfigType): The config for the backnone of segmentor.
        decode_head (ConfigType): The config for the decode head of segmentor.
        neck (OptConfigType): The config for the neck of segmentor.
            Defaults to None.
        auxiliary_head (OptConfigType): The config for the auxiliary head of
            segmentor. Defaults to None.
        loss_regularization (OptiConfigType): The config for the regularization
            loass. Defaults to None.
        train_cfg (OptConfigType): The config for training. Defaults to None.
        test_cfg (OptConfigType): The config for testing. Defaults to None.
        data_preprocessor (dict, optional): The pre-process config of
            :class:`BaseDataPreprocessor`.
        init_cfg (dict, optional): The weight initialized config for
            :class:`BaseModule`.
    """  # noqa: E501
73
74

    def __init__(self,
75
76
77
78
79
80
81
82
83
84
85
                 backbone: ConfigType,
                 decode_head: ConfigType,
                 neck: OptConfigType = None,
                 auxiliary_head: OptConfigType = None,
                 loss_regularization: OptConfigType = None,
                 train_cfg: OptConfigType = None,
                 test_cfg: OptConfigType = None,
                 data_preprocessor: OptConfigType = None,
                 init_cfg: OptMultiConfig = None):
        super(EncoderDecoder3D, self).__init__(
            data_preprocessor=data_preprocessor, init_cfg=init_cfg)
86
        self.backbone = MODELS.build(backbone)
87
        if neck is not None:
88
            self.neck = MODELS.build(neck)
89
90
        self._init_decode_head(decode_head)
        self._init_auxiliary_head(auxiliary_head)
91
        self._init_loss_regularization(loss_regularization)
92
93
94

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
95

96
97
98
        assert self.with_decode_head, \
            '3D EncoderDecoder Segmentor should have a decode_head'

99
    def _init_decode_head(self, decode_head: ConfigType) -> None:
100
        """Initialize ``decode_head``"""
101
        self.decode_head = MODELS.build(decode_head)
102
103
        self.num_classes = self.decode_head.num_classes

104
    def _init_auxiliary_head(self, auxiliary_head: ConfigType) -> None:
105
106
107
108
109
        """Initialize ``auxiliary_head``"""
        if auxiliary_head is not None:
            if isinstance(auxiliary_head, list):
                self.auxiliary_head = nn.ModuleList()
                for head_cfg in auxiliary_head:
110
                    self.auxiliary_head.append(MODELS.build(head_cfg))
111
            else:
112
                self.auxiliary_head = MODELS.build(auxiliary_head)
113

114
115
    def _init_loss_regularization(self,
                                  loss_regularization: ConfigType) -> None:
116
117
118
119
120
        """Initialize ``loss_regularization``"""
        if loss_regularization is not None:
            if isinstance(loss_regularization, list):
                self.loss_regularization = nn.ModuleList()
                for loss_cfg in loss_regularization:
121
                    self.loss_regularization.append(MODELS.build(loss_cfg))
122
            else:
123
                self.loss_regularization = MODELS.build(loss_regularization)
124

125
    def extract_feat(self, batch_inputs_dict: dict) -> List[Tensor]:
126
        """Extract features from points."""
127
128
129
        points = batch_inputs_dict['points']
        stack_points = torch.stack(points)
        x = self.backbone(stack_points)
130
131
132
133
        if self.with_neck:
            x = self.neck(x)
        return x

134
135
    def encode_decode(self, batch_inputs_dict: dict,
                      batch_input_metas: List[dict]) -> List[Tensor]:
136
137
138
139
        """Encode points with backbone and decode into a semantic segmentation
        map of the same size as input.

        Args:
140
141
142
143
144
145
            batch_inputs_dict (dict): Input sample dict which
                includes 'points' and 'imgs' keys.

                - points (list[torch.Tensor]): Point cloud of each sample.
                - imgs (torch.Tensor): Image tensor has shape (B, C, H, W).
            batch_input_metas (list[dict]): Meta information of each sample.
146
147
148
149

        Returns:
            torch.Tensor: Segmentation logits of shape [B, num_classes, N].
        """
150
151
152
153
        x = self.extract_feat(batch_inputs_dict)
        seg_logits = self.decode_head.predict(x, batch_input_metas,
                                              self.test_cfg)
        return seg_logits
154

155
156
    def _decode_head_forward_train(self, batch_inputs_dict: dict,
                                   batch_data_samples: SampleList) -> dict:
157
158
159
        """Run forward function and calculate loss for decode head in
        training."""
        losses = dict()
160
161
        loss_decode = self.decode_head.loss(batch_inputs_dict,
                                            batch_data_samples, self.train_cfg)
162
163
164
165

        losses.update(add_prefix(loss_decode, 'decode'))
        return losses

166
167
168
169
170
    def _auxiliary_head_forward_train(
        self,
        batch_inputs_dict: dict,
        batch_data_samples: SampleList,
    ) -> dict:
171
172
173
174
175
        """Run forward function and calculate loss for auxiliary head in
        training."""
        losses = dict()
        if isinstance(self.auxiliary_head, nn.ModuleList):
            for idx, aux_head in enumerate(self.auxiliary_head):
176
177
                loss_aux = aux_head.loss(batch_inputs_dict, batch_data_samples,
                                         self.train_cfg)
178
179
                losses.update(add_prefix(loss_aux, f'aux_{idx}'))
        else:
180
181
182
            loss_aux = self.auxiliary_head.loss(batch_inputs_dict,
                                                batch_data_samples,
                                                self.train_cfg)
183
184
185
186
            losses.update(add_prefix(loss_aux, 'aux'))

        return losses

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
    def _loss_regularization_forward_train(self):
        """Calculate regularization loss for model weight in training."""
        losses = dict()
        if isinstance(self.loss_regularization, nn.ModuleList):
            for idx, regularize_loss in enumerate(self.loss_regularization):
                loss_regularize = dict(
                    loss_regularize=regularize_loss(self.modules()))
                losses.update(add_prefix(loss_regularize, f'regularize_{idx}'))
        else:
            loss_regularize = dict(
                loss_regularize=self.loss_regularization(self.modules()))
            losses.update(add_prefix(loss_regularize, 'regularize'))

        return losses

202
203
204
    def loss(self, batch_inputs_dict: dict,
             batch_data_samples: SampleList) -> dict:
        """Calculate losses from a batch of inputs and data samples.
205
206

        Args:
207
208
209
210
211
212
213
214
215
            batch_inputs_dict (dict): Input sample dict which
                includes 'points' and 'imgs' keys.

                - points (list[torch.Tensor]): Point cloud of each sample.
                - imgs (torch.Tensor, optional): Image tensor has shape
                    (B, C, H, W).
            batch_data_samples (list[:obj:`Det3DDataSample`]): The det3d
                data samples. It usually includes information such
                as `metainfo` and `gt_pts_sem_seg`.
216
217

        Returns:
218
            dict[str, Tensor]: a dictionary of loss components.
219
220
221
        """

        # extract features using backbone
222
        x = self.extract_feat(batch_inputs_dict)
223
224
225

        losses = dict()

226
        loss_decode = self._decode_head_forward_train(x, batch_data_samples)
227
228
229
230
        losses.update(loss_decode)

        if self.with_auxiliary_head:
            loss_aux = self._auxiliary_head_forward_train(
231
                x, batch_data_samples)
232
233
            losses.update(loss_aux)

234
235
236
237
        if self.with_regularization_loss:
            loss_regularize = self._loss_regularization_forward_train()
            losses.update(loss_regularize)

238
239
240
241
        return losses

    @staticmethod
    def _input_generation(coords,
242
243
244
245
                          patch_center: Tensor,
                          coord_max: Tensor,
                          feats: Tensor,
                          use_normalized_coord: bool = False):
246
247
        """Generating model input.

248
        Generate input by subtracting patch center and adding additional
249
250
251
252
253
254
255
            features. Currently support colors and normalized xyz as features.

        Args:
            coords (torch.Tensor): Sampled 3D point coordinate of shape [S, 3].
            patch_center (torch.Tensor): Center coordinate of the patch.
            coord_max (torch.Tensor): Max coordinate of all 3D points.
            feats (torch.Tensor): Features of sampled points of shape [S, C].
256
            use_normalized_coord (bool, optional): Whether to use normalized
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
                xyz as additional features. Defaults to False.

        Returns:
            torch.Tensor: The generated input data of shape [S, 3+C'].
        """
        # subtract patch center, the z dimension is not centered
        centered_coords = coords.clone()
        centered_coords[:, 0] -= patch_center[0]
        centered_coords[:, 1] -= patch_center[1]

        # normalized coordinates as extra features
        if use_normalized_coord:
            normalized_coord = coords / coord_max
            feats = torch.cat([feats, normalized_coord], dim=1)

        points = torch.cat([centered_coords, feats], dim=1)

        return points

    def _sliding_patch_generation(self,
277
278
279
280
281
282
                                  points: Tensor,
                                  num_points: int,
                                  block_size: float,
                                  sample_rate: float = 0.5,
                                  use_normalized_coord: bool = False,
                                  eps: float = 1e-3):
283
284
285
286
287
288
289
290
291
292
293
        """Sampling points in a sliding window fashion.

        First sample patches to cover all the input points.
        Then sample points in each patch to batch points of a certain number.

        Args:
            points (torch.Tensor): Input points of shape [N, 3+C].
            num_points (int): Number of points to be sampled in each patch.
            block_size (float, optional): Size of a patch to sample.
            sample_rate (float, optional): Stride used in sliding patch.
                Defaults to 0.5.
294
            use_normalized_coord (bool, optional): Whether to use normalized
295
296
                xyz as additional features. Defaults to False.
            eps (float, optional): A value added to patch boundary to guarantee
297
                points coverage. Defaults to 1e-3.
298
299
300
301

        Returns:
            np.ndarray | np.ndarray:

302
                - patch_points (torch.Tensor): Points of different patches of
303
                    shape [K, N, 3+C].
304
                - patch_idxs (torch.Tensor): Index of each point in
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
                    `patch_points`, of shape [K, N].
        """
        device = points.device
        # we assume the first three dims are points' 3D coordinates
        # and the rest dims are their per-point features
        coords = points[:, :3]
        feats = points[:, 3:]

        coord_max = coords.max(0)[0]
        coord_min = coords.min(0)[0]
        stride = block_size * sample_rate
        num_grid_x = int(
            torch.ceil((coord_max[0] - coord_min[0] - block_size) /
                       stride).item() + 1)
        num_grid_y = int(
            torch.ceil((coord_max[1] - coord_min[1] - block_size) /
                       stride).item() + 1)

        patch_points, patch_idxs = [], []
        for idx_y in range(num_grid_y):
            s_y = coord_min[1] + idx_y * stride
            e_y = torch.min(s_y + block_size, coord_max[1])
            s_y = e_y - block_size
            for idx_x in range(num_grid_x):
                s_x = coord_min[0] + idx_x * stride
                e_x = torch.min(s_x + block_size, coord_max[0])
                s_x = e_x - block_size

                # extract points within this patch
                cur_min = torch.tensor([s_x, s_y, coord_min[2]]).to(device)
                cur_max = torch.tensor([e_x, e_y, coord_max[2]]).to(device)
                cur_choice = ((coords >= cur_min - eps) &
                              (coords <= cur_max + eps)).all(dim=1)

                if not cur_choice.any():  # no points in this patch
                    continue

                # sample points in this patch to multiple batches
                cur_center = cur_min + block_size / 2.0
                point_idxs = torch.nonzero(cur_choice, as_tuple=True)[0]
                num_batch = int(np.ceil(point_idxs.shape[0] / num_points))
                point_size = int(num_batch * num_points)
                replace = point_size > 2 * point_idxs.shape[0]
                num_repeat = point_size - point_idxs.shape[0]
                if replace:  # duplicate
                    point_idxs_repeat = point_idxs[torch.randint(
                        0, point_idxs.shape[0],
                        size=(num_repeat, )).to(device)]
                else:
                    point_idxs_repeat = point_idxs[torch.randperm(
                        point_idxs.shape[0])[:num_repeat]]

                choices = torch.cat([point_idxs, point_idxs_repeat], dim=0)
                choices = choices[torch.randperm(choices.shape[0])]

                # construct model input
                point_batches = self._input_generation(
                    coords[choices],
                    cur_center,
                    coord_max,
                    feats[choices],
                    use_normalized_coord=use_normalized_coord)

                patch_points.append(point_batches)
                patch_idxs.append(choices)

        patch_points = torch.cat(patch_points, dim=0)
        patch_idxs = torch.cat(patch_idxs, dim=0)

        # make sure all points are sampled at least once
        assert torch.unique(patch_idxs).shape[0] == points.shape[0], \
            'some points are not sampled in sliding inference'

        return patch_points, patch_idxs

380
381
    def slide_inference(self, point: Tensor, img_meta: List[dict],
                        rescale: bool):
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
        """Inference by sliding-window with overlap.

        Args:
            point (torch.Tensor): Input points of shape [N, 3+C].
            img_meta (dict): Meta information of input sample.
            rescale (bool): Whether transform to original number of points.
                Will be used for voxelization based segmentors.

        Returns:
            Tensor: The output segmentation map of shape [num_classes, N].
        """
        num_points = self.test_cfg.num_points
        block_size = self.test_cfg.block_size
        sample_rate = self.test_cfg.sample_rate
        use_normalized_coord = self.test_cfg.use_normalized_coord
        batch_size = self.test_cfg.batch_size * num_points

        # patch_points is of shape [K*N, 3+C], patch_idxs is of shape [K*N]
        patch_points, patch_idxs = self._sliding_patch_generation(
            point, num_points, block_size, sample_rate, use_normalized_coord)
        feats_dim = patch_points.shape[1]
        seg_logits = []  # save patch predictions

        for batch_idx in range(0, patch_points.shape[0], batch_size):
            batch_points = patch_points[batch_idx:batch_idx + batch_size]
            batch_points = batch_points.view(-1, num_points, feats_dim)
            # batch_seg_logit is of shape [B, num_classes, N]
            batch_seg_logit = self.encode_decode(batch_points, img_meta)
            batch_seg_logit = batch_seg_logit.transpose(1, 2).contiguous()
            seg_logits.append(batch_seg_logit.view(-1, self.num_classes))

        # aggregate per-point logits by indexing sum and dividing count
        seg_logits = torch.cat(seg_logits, dim=0)  # [K*N, num_classes]
        expand_patch_idxs = patch_idxs.unsqueeze(1).repeat(1, self.num_classes)
        preds = point.new_zeros((point.shape[0], self.num_classes)).\
            scatter_add_(dim=0, index=expand_patch_idxs, src=seg_logits)
        count_mat = torch.bincount(patch_idxs)
        preds = preds / count_mat[:, None]

        # TODO: if rescale and voxelization segmentor

        return preds.transpose(0, 1)  # to [num_classes, K*N]

425
426
    def whole_inference(self, points: Tensor, input_metas: List[dict],
                        rescale: bool):
427
        """Inference with full scene (one forward pass without sliding)."""
428
        seg_logit = self.encode_decode(points, input_metas)
429
430
431
        # TODO: if rescale and voxelization segmentor
        return seg_logit

432
433
    def inference(self, points: Tensor, input_metas: List[dict],
                  rescale: bool):
434
435
436
437
        """Inference with slide/whole style.

        Args:
            points (torch.Tensor): Input points of shape [B, N, 3+C].
438
            input_metas (list[dict]): Meta information of each sample.
439
440
441
442
443
444
445
446
447
448
            rescale (bool): Whether transform to original number of points.
                Will be used for voxelization based segmentors.

        Returns:
            Tensor: The output segmentation map.
        """
        assert self.test_cfg.mode in ['slide', 'whole']
        if self.test_cfg.mode == 'slide':
            seg_logit = torch.stack([
                self.slide_inference(point, img_meta, rescale)
449
                for point, img_meta in zip(points, input_metas)
450
451
            ], 0)
        else:
452
            seg_logit = self.whole_inference(points, input_metas, rescale)
453
454
455
        output = F.softmax(seg_logit, dim=1)
        return output

456
457
458
459
    def predict(self,
                batch_inputs_dict: dict,
                batch_data_samples: SampleList,
                rescale: bool = True) -> SampleList:
460
461
462
        """Simple test with single scene.

        Args:
463
464
465
466
467
468
469
470
471
            batch_inputs_dict (dict): Input sample dict which
                includes 'points' and 'imgs' keys.

                - points (list[torch.Tensor]): Point cloud of each sample.
                - imgs (torch.Tensor, optional): Image tensor has shape
                    (B, C, H, W).
            batch_data_samples (list[:obj:`Det3DDataSample`]): The det3d
                data samples. It usually includes information such
                as `metainfo` and `gt_pts_sem_seg`.
472
473
474
475
476
477
478
479
480
481
482
483
484
            rescale (bool): Whether transform to original number of points.
                Will be used for voxelization based segmentors.
                Defaults to True.

        Returns:
            list[dict]: The output prediction result with following keys:

                - semantic_mask (Tensor): Segmentation mask of shape [N].
        """
        # 3D segmentation requires per-point prediction, so it's impossible
        # to use down-sampling to get a batch of scenes with same num_points
        # therefore, we only support testing one scene every time
        seg_pred = []
485
486
487
488
489
490
491
492
        batch_input_metas = []
        for data_sample in batch_data_samples:
            batch_input_metas.append(data_sample.metainfo)

        points = batch_inputs_dict['points']
        for point, input_meta in zip(points, batch_input_metas):
            seg_prob = self.inference(
                point.unsqueeze(0), [input_meta], rescale)[0]
493
494
495
496
497
498
499
500
            seg_map = seg_prob.argmax(0)  # [N]
            # to cpu tensor for consistency with det3d
            seg_map = seg_map.cpu()
            seg_pred.append(seg_map)
        # warp in dict
        seg_pred = [dict(semantic_mask=seg_map) for seg_map in seg_pred]
        return seg_pred

501
502
503
504
    def _forward(self,
                 batch_inputs_dict: dict,
                 batch_data_samples: OptSampleList = None) -> Tensor:
        """Network forward process.
505
506

        Args:
507
508
            batch_inputs_dict (dict): Input sample dict which
                includes 'points' and 'imgs' keys.
509

510
511
512
513
514
515
                - points (list[torch.Tensor]): Point cloud of each sample.
                - imgs (torch.Tensor, optional): Image tensor has shape
                    (B, C, H, W).
            batch_data_samples (List[:obj:`Det3DDataSample`]): The seg
                data samples. It usually includes information such
                as `metainfo` and `gt_pts_sem_seg`.
516

517
518
        Returns:
            Tensor: Forward output of model without any post-processes.
519
        """
520
521
        x = self.extract_feat(batch_inputs_dict)
        return self.decode_head.forward(x)