point_sa_module.py 13.6 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
wuyuefeng's avatar
wuyuefeng committed
2
3
import torch
from mmcv.cnn import ConvModule
4
5
6
from mmcv.ops import GroupAll
from mmcv.ops import PointsSampler as Points_Sampler
from mmcv.ops import QueryAndGroup, gather_points
zhangwenwei's avatar
zhangwenwei committed
7
8
from torch import nn as nn
from torch.nn import functional as F
wuyuefeng's avatar
wuyuefeng committed
9

zhangshilong's avatar
zhangshilong committed
10
from mmdet3d.models.layers import PAConv
11
from .builder import SA_MODULES
wuyuefeng's avatar
wuyuefeng committed
12
13


14
15
class BasePointSAModule(nn.Module):
    """Base module for point set abstraction module used in PointNets.
wuyuefeng's avatar
wuyuefeng committed
16
17
18
19
20

    Args:
        num_point (int): Number of points.
        radii (list[float]): List of radius in each ball query.
        sample_nums (list[int]): Number of samples in each ball query.
21
        mlp_channels (list[list[int]]): Specify of the pointnet before
wuyuefeng's avatar
wuyuefeng committed
22
            the global pooling for each scale.
23
        fps_mod (list[str], optional): Type of FPS method, valid mod
24
25
26
27
            ['F-FPS', 'D-FPS', 'FS'], Default: ['D-FPS'].
            F-FPS: using feature distances for FPS.
            D-FPS: using Euclidean distances of points for FPS.
            FS: using F-FPS and D-FPS simultaneously.
28
29
30
        fps_sample_range_list (list[int], optional):
            Range of points to apply FPS. Default: [-1].
        dilated_group (bool, optional): Whether to use dilated ball query.
31
            Default: False.
32
        use_xyz (bool, optional): Whether to use xyz.
wuyuefeng's avatar
wuyuefeng committed
33
            Default: True.
34
        pool_mod (str, optional): Type of pooling method.
wuyuefeng's avatar
wuyuefeng committed
35
            Default: 'max_pool'.
36
37
38
39
40
41
        normalize_xyz (bool, optional): Whether to normalize local XYZ
            with radius. Default: False.
        grouper_return_grouped_xyz (bool, optional): Whether to return
            grouped xyz in `QueryAndGroup`. Defaults to False.
        grouper_return_grouped_idx (bool, optional): Whether to return
            grouped idx in `QueryAndGroup`. Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
42
43
44
    """

    def __init__(self,
45
46
47
48
49
50
51
52
                 num_point,
                 radii,
                 sample_nums,
                 mlp_channels,
                 fps_mod=['D-FPS'],
                 fps_sample_range_list=[-1],
                 dilated_group=False,
                 use_xyz=True,
wuyuefeng's avatar
wuyuefeng committed
53
                 pool_mod='max',
54
55
56
57
                 normalize_xyz=False,
                 grouper_return_grouped_xyz=False,
                 grouper_return_grouped_idx=False):
        super(BasePointSAModule, self).__init__()
wuyuefeng's avatar
wuyuefeng committed
58
59
60

        assert len(radii) == len(sample_nums) == len(mlp_channels)
        assert pool_mod in ['max', 'avg']
61
62
63
64
65
66
67
        assert isinstance(fps_mod, list) or isinstance(fps_mod, tuple)
        assert isinstance(fps_sample_range_list, list) or isinstance(
            fps_sample_range_list, tuple)
        assert len(fps_mod) == len(fps_sample_range_list)

        if isinstance(mlp_channels, tuple):
            mlp_channels = list(map(list, mlp_channels))
68
        self.mlp_channels = mlp_channels
69
70
71
72
73

        if isinstance(num_point, int):
            self.num_point = [num_point]
        elif isinstance(num_point, list) or isinstance(num_point, tuple):
            self.num_point = num_point
74
75
        elif num_point is None:
            self.num_point = None
76
77
        else:
            raise NotImplementedError('Error type of num_point!')
wuyuefeng's avatar
wuyuefeng committed
78
79
80
81

        self.pool_mod = pool_mod
        self.groupers = nn.ModuleList()
        self.mlps = nn.ModuleList()
82
83
84
        self.fps_mod_list = fps_mod
        self.fps_sample_range_list = fps_sample_range_list

85
86
87
88
89
90
        if self.num_point is not None:
            self.points_sampler = Points_Sampler(self.num_point,
                                                 self.fps_mod_list,
                                                 self.fps_sample_range_list)
        else:
            self.points_sampler = None
wuyuefeng's avatar
wuyuefeng committed
91
92
93
94
95

        for i in range(len(radii)):
            radius = radii[i]
            sample_num = sample_nums[i]
            if num_point is not None:
96
97
98
99
                if dilated_group and i != 0:
                    min_radius = radii[i - 1]
                else:
                    min_radius = 0
wuyuefeng's avatar
wuyuefeng committed
100
101
102
                grouper = QueryAndGroup(
                    radius,
                    sample_num,
103
                    min_radius=min_radius,
wuyuefeng's avatar
wuyuefeng committed
104
                    use_xyz=use_xyz,
105
106
107
                    normalize_xyz=normalize_xyz,
                    return_grouped_xyz=grouper_return_grouped_xyz,
                    return_grouped_idx=grouper_return_grouped_idx)
wuyuefeng's avatar
wuyuefeng committed
108
109
110
111
            else:
                grouper = GroupAll(use_xyz)
            self.groupers.append(grouper)

112
113
    def _sample_points(self, points_xyz, features, indices, target_xyz):
        """Perform point sampling based on inputs.
wuyuefeng's avatar
wuyuefeng committed
114

115
116
117
        If `indices` is specified, directly sample corresponding points.
        Else if `target_xyz` is specified, use is as sampled points.
        Otherwise sample points using `self.points_sampler`.
wuyuefeng's avatar
wuyuefeng committed
118
119
120
121
122

        Args:
            points_xyz (Tensor): (B, N, 3) xyz coordinates of the features.
            features (Tensor): (B, C, N) features of each point.
            indices (Tensor): (B, num_point) Index of the features.
123
            target_xyz (Tensor): (B, M, 3) new_xyz coordinates of the outputs.
wuyuefeng's avatar
wuyuefeng committed
124
125

        Returns:
126
127
            Tensor: (B, num_point, 3) sampled xyz coordinates of points.
            Tensor: (B, num_point) sampled points' index.
wuyuefeng's avatar
wuyuefeng committed
128
129
        """
        xyz_flipped = points_xyz.transpose(1, 2).contiguous()
130
131
132
133
134
135
136
        if indices is not None:
            assert (indices.shape[1] == self.num_point[0])
            new_xyz = gather_points(xyz_flipped, indices).transpose(
                1, 2).contiguous() if self.num_point is not None else None
        elif target_xyz is not None:
            new_xyz = target_xyz.contiguous()
        else:
137
138
139
140
141
142
            if self.num_point is not None:
                indices = self.points_sampler(points_xyz, features)
                new_xyz = gather_points(xyz_flipped,
                                        indices).transpose(1, 2).contiguous()
            else:
                new_xyz = None
wuyuefeng's avatar
wuyuefeng committed
143

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
        return new_xyz, indices

    def _pool_features(self, features):
        """Perform feature aggregation using pooling operation.

        Args:
            features (torch.Tensor): (B, C, N, K)
                Features of locally grouped points before pooling.

        Returns:
            torch.Tensor: (B, C, N)
                Pooled features aggregating local information.
        """
        if self.pool_mod == 'max':
            # (B, C, N, 1)
            new_features = F.max_pool2d(
                features, kernel_size=[1, features.size(3)])
        elif self.pool_mod == 'avg':
            # (B, C, N, 1)
            new_features = F.avg_pool2d(
                features, kernel_size=[1, features.size(3)])
        else:
            raise NotImplementedError

        return new_features.squeeze(-1).contiguous()

    def forward(
        self,
        points_xyz,
        features=None,
        indices=None,
        target_xyz=None,
    ):
        """forward.

        Args:
            points_xyz (Tensor): (B, N, 3) xyz coordinates of the features.
181
            features (Tensor, optional): (B, C, N) features of each point.
182
                Default: None.
183
184
185
            indices (Tensor, optional): (B, num_point) Index of the features.
                Default: None.
            target_xyz (Tensor, optional): (B, M, 3) new coords of the outputs.
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
                Default: None.

        Returns:
            Tensor: (B, M, 3) where M is the number of points.
                New features xyz.
            Tensor: (B, M, sum_k(mlps[k][-1])) where M is the number
                of points. New feature descriptors.
            Tensor: (B, M) where M is the number of points.
                Index of the features.
        """
        new_features_list = []

        # sample points, (B, num_point, 3), (B, num_point)
        new_xyz, indices = self._sample_points(points_xyz, features, indices,
                                               target_xyz)

wuyuefeng's avatar
wuyuefeng committed
202
        for i in range(len(self.groupers)):
203
204
205
206
207
            # grouped_results may contain:
            # - grouped_features: (B, C, num_point, nsample)
            # - grouped_xyz: (B, 3, num_point, nsample)
            # - grouped_idx: (B, num_point, nsample)
            grouped_results = self.groupers[i](points_xyz, new_xyz, features)
wuyuefeng's avatar
wuyuefeng committed
208
209

            # (B, mlp[-1], num_point, nsample)
210
            new_features = self.mlps[i](grouped_results)
wuyuefeng's avatar
wuyuefeng committed
211

212
213
214
215
216
217
218
219
            # this is a bit hack because PAConv outputs two values
            # we take the first one as feature
            if isinstance(self.mlps[i][0], PAConv):
                assert isinstance(new_features, tuple)
                new_features = new_features[0]

            # (B, mlp[-1], num_point)
            new_features = self._pool_features(new_features)
wuyuefeng's avatar
wuyuefeng committed
220
221
222
223
224
            new_features_list.append(new_features)

        return new_xyz, torch.cat(new_features_list, dim=1), indices


225
226
227
228
229
230
231
232
233
234
235
@SA_MODULES.register_module()
class PointSAModuleMSG(BasePointSAModule):
    """Point set abstraction module with multi-scale grouping (MSG) used in
    PointNets.

    Args:
        num_point (int): Number of points.
        radii (list[float]): List of radius in each ball query.
        sample_nums (list[int]): Number of samples in each ball query.
        mlp_channels (list[list[int]]): Specify of the pointnet before
            the global pooling for each scale.
236
        fps_mod (list[str], optional): Type of FPS method, valid mod
237
238
239
240
            ['F-FPS', 'D-FPS', 'FS'], Default: ['D-FPS'].
            F-FPS: using feature distances for FPS.
            D-FPS: using Euclidean distances of points for FPS.
            FS: using F-FPS and D-FPS simultaneously.
241
242
243
        fps_sample_range_list (list[int], optional): Range of points to
            apply FPS. Default: [-1].
        dilated_group (bool, optional): Whether to use dilated ball query.
244
            Default: False.
245
        norm_cfg (dict, optional): Type of normalization method.
246
            Default: dict(type='BN2d').
247
        use_xyz (bool, optional): Whether to use xyz.
248
            Default: True.
249
        pool_mod (str, optional): Type of pooling method.
250
            Default: 'max_pool'.
251
252
253
254
255
        normalize_xyz (bool, optional): Whether to normalize local XYZ
            with radius. Default: False.
        bias (bool | str, optional): If specified as `auto`, it will be
            decided by `norm_cfg`. `bias` will be set as True if
            `norm_cfg` is None, otherwise False. Default: 'auto'.
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
    """

    def __init__(self,
                 num_point,
                 radii,
                 sample_nums,
                 mlp_channels,
                 fps_mod=['D-FPS'],
                 fps_sample_range_list=[-1],
                 dilated_group=False,
                 norm_cfg=dict(type='BN2d'),
                 use_xyz=True,
                 pool_mod='max',
                 normalize_xyz=False,
                 bias='auto'):
        super(PointSAModuleMSG, self).__init__(
            num_point=num_point,
            radii=radii,
            sample_nums=sample_nums,
            mlp_channels=mlp_channels,
            fps_mod=fps_mod,
            fps_sample_range_list=fps_sample_range_list,
            dilated_group=dilated_group,
            use_xyz=use_xyz,
            pool_mod=pool_mod,
            normalize_xyz=normalize_xyz)

        for i in range(len(self.mlp_channels)):
            mlp_channel = self.mlp_channels[i]
            if use_xyz:
                mlp_channel[0] += 3

            mlp = nn.Sequential()
            for i in range(len(mlp_channel) - 1):
                mlp.add_module(
                    f'layer{i}',
                    ConvModule(
                        mlp_channel[i],
                        mlp_channel[i + 1],
                        kernel_size=(1, 1),
                        stride=(1, 1),
                        conv_cfg=dict(type='Conv2d'),
                        norm_cfg=norm_cfg,
                        bias=bias))
            self.mlps.append(mlp)


303
@SA_MODULES.register_module()
wuyuefeng's avatar
wuyuefeng committed
304
class PointSAModule(PointSAModuleMSG):
305
306
    """Point set abstraction module with single-scale grouping (SSG) used in
    PointNets.
wuyuefeng's avatar
wuyuefeng committed
307
308
309
310

    Args:
        mlp_channels (list[int]): Specify of the pointnet before
            the global pooling for each scale.
311
        num_point (int, optional): Number of points.
wuyuefeng's avatar
wuyuefeng committed
312
            Default: None.
313
        radius (float, optional): Radius to group with.
wuyuefeng's avatar
wuyuefeng committed
314
            Default: None.
315
        num_sample (int, optional): Number of samples in each ball query.
wuyuefeng's avatar
wuyuefeng committed
316
            Default: None.
317
        norm_cfg (dict, optional): Type of normalization method.
wuyuefeng's avatar
wuyuefeng committed
318
            Default: dict(type='BN2d').
319
        use_xyz (bool, optional): Whether to use xyz.
wuyuefeng's avatar
wuyuefeng committed
320
            Default: True.
321
        pool_mod (str, optional): Type of pooling method.
wuyuefeng's avatar
wuyuefeng committed
322
            Default: 'max_pool'.
323
        fps_mod (list[str], optional): Type of FPS method, valid mod
324
            ['F-FPS', 'D-FPS', 'FS'], Default: ['D-FPS'].
325
326
327
328
        fps_sample_range_list (list[int], optional): Range of points
            to apply FPS. Default: [-1].
        normalize_xyz (bool, optional): Whether to normalize local XYZ
            with radius. Default: False.
wuyuefeng's avatar
wuyuefeng committed
329
330
331
    """

    def __init__(self,
332
333
334
335
336
337
338
339
340
341
342
                 mlp_channels,
                 num_point=None,
                 radius=None,
                 num_sample=None,
                 norm_cfg=dict(type='BN2d'),
                 use_xyz=True,
                 pool_mod='max',
                 fps_mod=['D-FPS'],
                 fps_sample_range_list=[-1],
                 normalize_xyz=False):
        super(PointSAModule, self).__init__(
wuyuefeng's avatar
wuyuefeng committed
343
344
345
346
347
348
349
            mlp_channels=[mlp_channels],
            num_point=num_point,
            radii=[radius],
            sample_nums=[num_sample],
            norm_cfg=norm_cfg,
            use_xyz=use_xyz,
            pool_mod=pool_mod,
350
351
            fps_mod=fps_mod,
            fps_sample_range_list=fps_sample_range_list,
wuyuefeng's avatar
wuyuefeng committed
352
            normalize_xyz=normalize_xyz)