ssd_3d_head.py 25 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
from typing import List, Optional, Tuple, Union

4
import torch
5
from mmcv import ConfigDict
6
from mmcv.ops.nms import batched_nms
7
8
from mmengine import InstanceData
from torch import Tensor
9
10
from torch.nn import functional as F

11
from mmdet3d.registry import MODELS
zhangshilong's avatar
zhangshilong committed
12
13
14
15
16
from mmdet3d.structures import BaseInstance3DBoxes
from mmdet3d.structures.bbox_3d import (DepthInstance3DBoxes,
                                        LiDARInstance3DBoxes,
                                        rotation_3d_in_axis)
from mmdet.models.utils import multi_apply
17
from ..builder import build_loss
18
19
20
from .vote_head import VoteHead


21
@MODELS.register_module()
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
class SSD3DHead(VoteHead):
    r"""Bbox head of `3DSSD <https://arxiv.org/abs/2002.10187>`_.

    Args:
        num_classes (int): The number of class.
        bbox_coder (:obj:`BaseBBoxCoder`): Bbox coder for encoding and
            decoding boxes.
        train_cfg (dict): Config for training.
        test_cfg (dict): Config for testing.
        vote_module_cfg (dict): Config of VoteModule for point-wise votes.
        vote_aggregation_cfg (dict): Config of vote aggregation layer.
        pred_layer_cfg (dict): Config of classfication and regression
            prediction layers.
        conv_cfg (dict): Config of convolution in prediction layer.
        norm_cfg (dict): Config of BN in prediction layer.
        act_cfg (dict): Config of activation in prediction layer.
        objectness_loss (dict): Config of objectness loss.
        center_loss (dict): Config of center loss.
        dir_class_loss (dict): Config of direction classification loss.
        dir_res_loss (dict): Config of direction residual regression loss.
        size_res_loss (dict): Config of size residual regression loss.
        corner_loss (dict): Config of bbox corners regression loss.
        vote_loss (dict): Config of candidate points regression loss.
    """

    def __init__(self,
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
                 num_classes: int,
                 bbox_coder: Union[ConfigDict, dict],
                 train_cfg: Optional[dict] = None,
                 test_cfg: Optional[dict] = None,
                 vote_module_cfg: Optional[dict] = None,
                 vote_aggregation_cfg: Optional[dict] = None,
                 pred_layer_cfg: Optional[dict] = None,
                 objectness_loss: Optional[dict] = None,
                 center_loss: Optional[dict] = None,
                 dir_class_loss: Optional[dict] = None,
                 dir_res_loss: Optional[dict] = None,
                 size_res_loss: Optional[dict] = None,
                 corner_loss: Optional[dict] = None,
                 vote_loss: Optional[dict] = None,
                 init_cfg: Optional[dict] = None) -> None:
63
64
65
66
67
68
69
70
71
72
73
74
75
76
        super(SSD3DHead, self).__init__(
            num_classes,
            bbox_coder,
            train_cfg=train_cfg,
            test_cfg=test_cfg,
            vote_module_cfg=vote_module_cfg,
            vote_aggregation_cfg=vote_aggregation_cfg,
            pred_layer_cfg=pred_layer_cfg,
            objectness_loss=objectness_loss,
            center_loss=center_loss,
            dir_class_loss=dir_class_loss,
            dir_res_loss=dir_res_loss,
            size_class_loss=None,
            size_res_loss=size_res_loss,
77
78
            semantic_loss=None,
            init_cfg=init_cfg)
79
80
81
82
        self.corner_loss = build_loss(corner_loss)
        self.vote_loss = build_loss(vote_loss)
        self.num_candidates = vote_module_cfg['num_points']

83
    def _get_cls_out_channels(self) -> int:
84
85
86
87
        """Return the channel number of classification outputs."""
        # Class numbers (k) + objectness (1)
        return self.num_classes

88
    def _get_reg_out_channels(self) -> int:
89
90
91
92
93
94
        """Return the channel number of regression outputs."""
        # Bbox classification and regression
        # (center residual (3), size regression (3)
        # heading class+residual (num_dir_bins*2)),
        return 3 + 3 + self.num_dir_bins * 2

95
    def _extract_input(self, feat_dict: dict) -> Tuple:
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
        """Extract inputs from features dictionary.

        Args:
            feat_dict (dict): Feature dict from backbone.

        Returns:
            torch.Tensor: Coordinates of input points.
            torch.Tensor: Features of input points.
            torch.Tensor: Indices of input points.
        """
        seed_points = feat_dict['sa_xyz'][-1]
        seed_features = feat_dict['sa_features'][-1]
        seed_indices = feat_dict['sa_indices'][-1]

        return seed_points, seed_features, seed_indices

112
113
114
115
116
117
118
119
120
121
    def loss_by_feat(
            self,
            points: List[torch.Tensor],
            bbox_preds_dict: dict,
            batch_gt_instances_3d: List[InstanceData],
            batch_pts_semantic_mask: Optional[List[torch.Tensor]] = None,
            batch_pts_instance_mask: Optional[List[torch.Tensor]] = None,
            batch_input_metas: List[dict] = None,
            ret_target: bool = False,
            **kwargs) -> dict:
122
123
124
125
        """Compute loss.

        Args:
            points (list[torch.Tensor]): Input points.
126
127
128
129
130
131
132
133
134
135
            bbox_preds_dict (dict): Predictions from forward of vote head.
            batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
                gt_instances. It usually includes ``bboxes_3d`` and
                ``labels_3d`` attributes.
            batch_pts_semantic_mask (list[tensor]): Semantic mask
                of points cloud. Defaults to None. Defaults to None.
            batch_pts_semantic_mask (list[tensor]): Instance mask
                of points cloud. Defaults to None. Defaults to None.
            batch_input_metas (list[dict]): Contain pcd and img's meta info.
            ret_target (bool): Return targets or not.  Defaults to False.
136
137
138
139

        Returns:
            dict: Losses of 3DSSD.
        """
140
141
142
143
144

        targets = self.get_targets(points, bbox_preds_dict,
                                   batch_gt_instances_3d,
                                   batch_pts_semantic_mask,
                                   batch_pts_instance_mask)
145
146
147
148
149
150
        (vote_targets, center_targets, size_res_targets, dir_class_targets,
         dir_res_targets, mask_targets, centerness_targets, corner3d_targets,
         vote_mask, positive_mask, negative_mask, centerness_weights,
         box_loss_weights, heading_res_loss_weight) = targets

        # calculate centerness loss
151
152
        centerness_loss = self.loss_objectness(
            bbox_preds_dict['obj_scores'].transpose(2, 1),
153
154
155
156
            centerness_targets,
            weight=centerness_weights)

        # calculate center loss
157
158
        center_loss = self.loss_center(
            bbox_preds_dict['center_offset'],
159
160
161
162
            center_targets,
            weight=box_loss_weights.unsqueeze(-1))

        # calculate direction class loss
163
164
        dir_class_loss = self.loss_dir_class(
            bbox_preds_dict['dir_class'].transpose(1, 2),
165
166
167
168
            dir_class_targets,
            weight=box_loss_weights)

        # calculate direction residual loss
169
170
        dir_res_loss = self.loss_dir_res(
            bbox_preds_dict['dir_res_norm'],
171
172
173
174
            dir_res_targets.unsqueeze(-1).repeat(1, 1, self.num_dir_bins),
            weight=heading_res_loss_weight)

        # calculate size residual loss
175
176
        size_loss = self.loss_size_res(
            bbox_preds_dict['size'],
177
178
179
180
181
            size_res_targets,
            weight=box_loss_weights.unsqueeze(-1))

        # calculate corner loss
        one_hot_dir_class_targets = dir_class_targets.new_zeros(
182
            bbox_preds_dict['dir_class'].shape)
183
184
185
186
        one_hot_dir_class_targets.scatter_(2, dir_class_targets.unsqueeze(-1),
                                           1)
        pred_bbox3d = self.bbox_coder.decode(
            dict(
187
188
                center=bbox_preds_dict['center'],
                dir_res=bbox_preds_dict['dir_res'],
189
                dir_class=one_hot_dir_class_targets,
190
                size=bbox_preds_dict['size']))
191
        pred_bbox3d = pred_bbox3d.reshape(-1, pred_bbox3d.shape[-1])
192
        pred_bbox3d = batch_input_metas[0]['box_type_3d'](
193
194
195
196
197
198
199
200
201
202
203
204
            pred_bbox3d.clone(),
            box_dim=pred_bbox3d.shape[-1],
            with_yaw=self.bbox_coder.with_rot,
            origin=(0.5, 0.5, 0.5))
        pred_corners3d = pred_bbox3d.corners.reshape(-1, 8, 3)
        corner_loss = self.corner_loss(
            pred_corners3d,
            corner3d_targets.reshape(-1, 8, 3),
            weight=box_loss_weights.view(-1, 1, 1))

        # calculate vote loss
        vote_loss = self.vote_loss(
205
            bbox_preds_dict['vote_offset'].transpose(1, 2),
206
207
208
209
210
211
212
213
214
215
216
217
218
219
            vote_targets,
            weight=vote_mask.unsqueeze(-1))

        losses = dict(
            centerness_loss=centerness_loss,
            center_loss=center_loss,
            dir_class_loss=dir_class_loss,
            dir_res_loss=dir_res_loss,
            size_res_loss=size_loss,
            corner_loss=corner_loss,
            vote_loss=vote_loss)

        return losses

220
221
222
223
224
225
226
227
228
    def get_targets(
        self,
        points: List[Tensor],
        bbox_preds_dict: dict = None,
        batch_gt_instances_3d: List[InstanceData] = None,
        batch_pts_semantic_mask: List[torch.Tensor] = None,
        batch_pts_instance_mask: List[torch.Tensor] = None,
    ) -> Tuple[Tensor]:
        """Generate targets of 3DSSD head.
229
230
231

        Args:
            points (list[torch.Tensor]): Points of each batch.
232
233
234
235
236
237
238
239
240
            bbox_preds_dict (dict): Bounding box predictions of
                vote head.  Defaults to None.
            batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
                gt_instances. It usually includes ``bboxes`` and ``labels``
                attributes.  Defaults to None.
            batch_pts_semantic_mask (list[tensor]): Semantic gt mask for
                point clouds.  Defaults to None.
            batch_pts_instance_mask (list[tensor]): Instance gt mask for
                point clouds. Defaults to None.
241
242

        Returns:
243
            tuple[torch.Tensor]: Targets of 3DSSD head.
244
        """
245
246
247
248
249
250
251
252
        batch_gt_labels_3d = [
            gt_instances_3d.labels_3d
            for gt_instances_3d in batch_gt_instances_3d
        ]
        batch_gt_bboxes_3d = [
            gt_instances_3d.bboxes_3d
            for gt_instances_3d in batch_gt_instances_3d
        ]
253

254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
        # find empty example
        for index in range(len(batch_gt_labels_3d)):
            if len(batch_gt_labels_3d[index]) == 0:
                fake_box = batch_gt_bboxes_3d[index].tensor.new_zeros(
                    1, batch_gt_bboxes_3d[index].tensor.shape[-1])
                batch_gt_bboxes_3d[index] = batch_gt_bboxes_3d[index].new_box(
                    fake_box)
                batch_gt_labels_3d[index] = batch_gt_labels_3d[
                    index].new_zeros(1)

        if batch_pts_semantic_mask is None:
            batch_pts_semantic_mask = [
                None for _ in range(len(batch_gt_labels_3d))
            ]
            batch_pts_instance_mask = [
                None for _ in range(len(batch_gt_labels_3d))
            ]
271
272

        aggregated_points = [
273
274
            bbox_preds_dict['aggregated_points'][i]
            for i in range(len(batch_gt_labels_3d))
275
276
277
        ]

        seed_points = [
278
279
            bbox_preds_dict['seed_points'][i, :self.num_candidates].detach()
            for i in range(len(batch_gt_labels_3d))
280
281
282
283
284
        ]

        (vote_targets, center_targets, size_res_targets, dir_class_targets,
         dir_res_targets, mask_targets, centerness_targets, corner3d_targets,
         vote_mask, positive_mask, negative_mask) = multi_apply(
285
286
287
             self.get_targets_single, points, batch_gt_bboxes_3d,
             batch_gt_labels_3d, batch_pts_semantic_mask,
             batch_pts_instance_mask, aggregated_points, seed_points)
288
289
290
291
292
293
294
295
296
297
298
299
300

        center_targets = torch.stack(center_targets)
        positive_mask = torch.stack(positive_mask)
        negative_mask = torch.stack(negative_mask)
        dir_class_targets = torch.stack(dir_class_targets)
        dir_res_targets = torch.stack(dir_res_targets)
        size_res_targets = torch.stack(size_res_targets)
        mask_targets = torch.stack(mask_targets)
        centerness_targets = torch.stack(centerness_targets).detach()
        corner3d_targets = torch.stack(corner3d_targets)
        vote_targets = torch.stack(vote_targets)
        vote_mask = torch.stack(vote_mask)

301
        center_targets -= bbox_preds_dict['aggregated_points']
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

        centerness_weights = (positive_mask +
                              negative_mask).unsqueeze(-1).repeat(
                                  1, 1, self.num_classes).float()
        centerness_weights = centerness_weights / \
            (centerness_weights.sum() + 1e-6)
        vote_mask = vote_mask / (vote_mask.sum() + 1e-6)

        box_loss_weights = positive_mask / (positive_mask.sum() + 1e-6)

        batch_size, proposal_num = dir_class_targets.shape[:2]
        heading_label_one_hot = dir_class_targets.new_zeros(
            (batch_size, proposal_num, self.num_dir_bins))
        heading_label_one_hot.scatter_(2, dir_class_targets.unsqueeze(-1), 1)
        heading_res_loss_weight = heading_label_one_hot * \
            box_loss_weights.unsqueeze(-1)

        return (vote_targets, center_targets, size_res_targets,
                dir_class_targets, dir_res_targets, mask_targets,
                centerness_targets, corner3d_targets, vote_mask, positive_mask,
                negative_mask, centerness_weights, box_loss_weights,
                heading_res_loss_weight)

    def get_targets_single(self,
326
327
328
329
330
331
332
333
                           points: Tensor,
                           gt_bboxes_3d: BaseInstance3DBoxes,
                           gt_labels_3d: Tensor,
                           pts_semantic_mask: Optional[Tensor] = None,
                           pts_instance_mask: Optional[Tensor] = None,
                           aggregated_points: Optional[Tensor] = None,
                           seed_points: Optional[Tensor] = None,
                           **kwargs):
334
335
336
337
        """Generate targets of ssd3d head for single batch.

        Args:
            points (torch.Tensor): Points of each batch.
338
            gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): Ground truth
339
340
                boxes of each batch.
            gt_labels_3d (torch.Tensor): Labels of each batch.
341
            pts_semantic_mask (torch.Tensor): Point-wise semantic
342
                label of each batch.
343
            pts_instance_mask (torch.Tensor): Point-wise instance
344
345
346
347
348
349
350
351
352
353
354
355
356
                label of each batch.
            aggregated_points (torch.Tensor): Aggregated points from
                candidate points layer.
            seed_points (torch.Tensor): Seed points of candidate points.

        Returns:
            tuple[torch.Tensor]: Targets of ssd3d head.
        """
        assert self.bbox_coder.with_rot or pts_semantic_mask is not None
        gt_bboxes_3d = gt_bboxes_3d.to(points.device)
        valid_gt = gt_labels_3d != -1
        gt_bboxes_3d = gt_bboxes_3d[valid_gt]
        gt_labels_3d = gt_labels_3d[valid_gt]
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380

        # Generate fake GT for empty scene
        if valid_gt.sum() == 0:
            vote_targets = points.new_zeros(self.num_candidates, 3)
            center_targets = points.new_zeros(self.num_candidates, 3)
            size_res_targets = points.new_zeros(self.num_candidates, 3)
            dir_class_targets = points.new_zeros(
                self.num_candidates, dtype=torch.int64)
            dir_res_targets = points.new_zeros(self.num_candidates)
            mask_targets = points.new_zeros(
                self.num_candidates, dtype=torch.int64)
            centerness_targets = points.new_zeros(self.num_candidates,
                                                  self.num_classes)
            corner3d_targets = points.new_zeros(self.num_candidates, 8, 3)
            vote_mask = points.new_zeros(self.num_candidates, dtype=torch.bool)
            positive_mask = points.new_zeros(
                self.num_candidates, dtype=torch.bool)
            negative_mask = points.new_ones(
                self.num_candidates, dtype=torch.bool)
            return (vote_targets, center_targets, size_res_targets,
                    dir_class_targets, dir_res_targets, mask_targets,
                    centerness_targets, corner3d_targets, vote_mask,
                    positive_mask, negative_mask)

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
        gt_corner3d = gt_bboxes_3d.corners

        (center_targets, size_targets, dir_class_targets,
         dir_res_targets) = self.bbox_coder.encode(gt_bboxes_3d, gt_labels_3d)

        points_mask, assignment = self._assign_targets_by_points_inside(
            gt_bboxes_3d, aggregated_points)

        center_targets = center_targets[assignment]
        size_res_targets = size_targets[assignment]
        mask_targets = gt_labels_3d[assignment]
        dir_class_targets = dir_class_targets[assignment]
        dir_res_targets = dir_res_targets[assignment]
        corner3d_targets = gt_corner3d[assignment]

        top_center_targets = center_targets.clone()
        top_center_targets[:, 2] += size_res_targets[:, 2]
        dist = torch.norm(aggregated_points - top_center_targets, dim=1)
        dist_mask = dist < self.train_cfg.pos_distance_thr
        positive_mask = (points_mask.max(1)[0] > 0) * dist_mask
        negative_mask = (points_mask.max(1)[0] == 0)

        # Centerness loss targets
        canonical_xyz = aggregated_points - center_targets
        if self.bbox_coder.with_rot:
            # TODO: Align points rotation implementation of
            # LiDARInstance3DBoxes and DepthInstance3DBoxes
            canonical_xyz = rotation_3d_in_axis(
                canonical_xyz.unsqueeze(0).transpose(0, 1),
Yezhen Cong's avatar
Yezhen Cong committed
410
411
                -gt_bboxes_3d.yaw[assignment],
                axis=2).squeeze(1)
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
        distance_front = torch.clamp(
            size_res_targets[:, 0] - canonical_xyz[:, 0], min=0)
        distance_back = torch.clamp(
            size_res_targets[:, 0] + canonical_xyz[:, 0], min=0)
        distance_left = torch.clamp(
            size_res_targets[:, 1] - canonical_xyz[:, 1], min=0)
        distance_right = torch.clamp(
            size_res_targets[:, 1] + canonical_xyz[:, 1], min=0)
        distance_top = torch.clamp(
            size_res_targets[:, 2] - canonical_xyz[:, 2], min=0)
        distance_bottom = torch.clamp(
            size_res_targets[:, 2] + canonical_xyz[:, 2], min=0)

        centerness_l = torch.min(distance_front, distance_back) / torch.max(
            distance_front, distance_back)
        centerness_w = torch.min(distance_left, distance_right) / torch.max(
            distance_left, distance_right)
        centerness_h = torch.min(distance_bottom, distance_top) / torch.max(
            distance_bottom, distance_top)
        centerness_targets = torch.clamp(
            centerness_l * centerness_w * centerness_h, min=0)
        centerness_targets = centerness_targets.pow(1 / 3.0)
        centerness_targets = torch.clamp(centerness_targets, min=0, max=1)

        proposal_num = centerness_targets.shape[0]
        one_hot_centerness_targets = centerness_targets.new_zeros(
            (proposal_num, self.num_classes))
        one_hot_centerness_targets.scatter_(1, mask_targets.unsqueeze(-1), 1)
        centerness_targets = centerness_targets.unsqueeze(
            1) * one_hot_centerness_targets

        # Vote loss targets
        enlarged_gt_bboxes_3d = gt_bboxes_3d.enlarged_box(
            self.train_cfg.expand_dims_length)
        enlarged_gt_bboxes_3d.tensor[:, 2] -= self.train_cfg.expand_dims_length
        vote_mask, vote_assignment = self._assign_targets_by_points_inside(
            enlarged_gt_bboxes_3d, seed_points)

        vote_targets = gt_bboxes_3d.gravity_center
        vote_targets = vote_targets[vote_assignment] - seed_points
        vote_mask = vote_mask.max(1)[0] > 0

        return (vote_targets, center_targets, size_res_targets,
                dir_class_targets, dir_res_targets, mask_targets,
                centerness_targets, corner3d_targets, vote_mask, positive_mask,
                negative_mask)

459
460
461
462
    def predict_by_feat(self, points: List[torch.Tensor],
                        bbox_preds_dict: dict, batch_input_metas: List[dict],
                        **kwargs) -> List[InstanceData]:
        """Generate bboxes from vote head predictions.
463
464

        Args:
465
466
467
468
            points (List[torch.Tensor]): Input points of multiple samples.
            bbox_preds_dict (dict): Predictions from vote head.
            batch_input_metas (list[dict]): Each item
                contains the meta information of each sample.
469
470

        Returns:
471
472
473
            list[:obj:`InstanceData`]: List of processed predictions. Each
            InstanceData cantains 3d Bounding boxes and corresponding
            scores and labels.
474
475
        """
        # decode boxes
476
        sem_scores = F.sigmoid(bbox_preds_dict['obj_scores']).transpose(1, 2)
477
        obj_scores = sem_scores.max(-1)[0]
478
        bbox3d = self.bbox_coder.decode(bbox_preds_dict)
479
        batch_size = bbox3d.shape[0]
480
481
        points = torch.stack(points)
        results_list = []
482
        for b in range(batch_size):
483
            temp_results = InstanceData()
484
485
            bbox_selected, score_selected, labels = self.multiclass_nms_single(
                obj_scores[b], sem_scores[b], bbox3d[b], points[b, ..., :3],
486
                batch_input_metas[b])
487

488
            bbox = batch_input_metas[b]['box_type_3d'](
489
490
491
492
                bbox_selected.clone(),
                box_dim=bbox_selected.shape[-1],
                with_yaw=self.bbox_coder.with_rot)

493
494
495
496
497
498
            temp_results.bboxes_3d = bbox
            temp_results.scores_3d = score_selected
            temp_results.labels_3d = labels
            results_list.append(temp_results)

        return results_list
499

500
501
502
    def multiclass_nms_single(self, obj_scores: Tensor, sem_scores: Tensor,
                              bbox: Tensor, points: Tensor,
                              input_meta: dict) -> Tuple[Tensor]:
503
504
505
506
        """Multi-class nms in single batch.

        Args:
            obj_scores (torch.Tensor): Objectness score of bounding boxes.
507
            sem_scores (torch.Tensor): Semantic class score of bounding boxes.
508
509
510
511
512
513
514
515
516
517
518
            bbox (torch.Tensor): Predicted bounding boxes.
            points (torch.Tensor): Input points.
            input_meta (dict): Point cloud and image's meta info.

        Returns:
            tuple[torch.Tensor]: Bounding boxes, scores and labels.
        """
        bbox = input_meta['box_type_3d'](
            bbox.clone(),
            box_dim=bbox.shape[-1],
            with_yaw=self.bbox_coder.with_rot,
xiliu8006's avatar
xiliu8006 committed
519
            origin=(0.5, 0.5, 0.5))
520

521
        if isinstance(bbox, (LiDARInstance3DBoxes, DepthInstance3DBoxes)):
522
            box_indices = bbox.points_in_boxes_all(points)
523
524
525
526
527
528
529
530
531
532
            nonempty_box_mask = box_indices.T.sum(1) >= 0
        else:
            raise NotImplementedError('Unsupported bbox type!')

        corner3d = bbox.corners
        minmax_box3d = corner3d.new(torch.Size((corner3d.shape[0], 6)))
        minmax_box3d[:, :3] = torch.min(corner3d, dim=1)[0]
        minmax_box3d[:, 3:] = torch.max(corner3d, dim=1)[0]

        bbox_classes = torch.argmax(sem_scores, -1)
533
        nms_keep = batched_nms(
534
535
536
537
            minmax_box3d[nonempty_box_mask][:, [0, 1, 3, 4]],
            obj_scores[nonempty_box_mask], bbox_classes[nonempty_box_mask],
            self.test_cfg.nms_cfg)[1]

538
539
        if nms_keep.shape[0] > self.test_cfg.max_output_num:
            nms_keep = nms_keep[:self.test_cfg.max_output_num]
540
541
542

        # filter empty boxes and boxes with low score
        scores_mask = (obj_scores >= self.test_cfg.score_thr)
Wenhao Wu's avatar
Wenhao Wu committed
543
544
        nonempty_box_inds = torch.nonzero(
            nonempty_box_mask, as_tuple=False).flatten()
545
        nonempty_mask = torch.zeros_like(bbox_classes).scatter(
546
            0, nonempty_box_inds[nms_keep], 1)
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
        selected = (nonempty_mask.bool() & scores_mask.bool())

        if self.test_cfg.per_class_proposal:
            bbox_selected, score_selected, labels = [], [], []
            for k in range(sem_scores.shape[-1]):
                bbox_selected.append(bbox[selected].tensor)
                score_selected.append(obj_scores[selected])
                labels.append(
                    torch.zeros_like(bbox_classes[selected]).fill_(k))
            bbox_selected = torch.cat(bbox_selected, 0)
            score_selected = torch.cat(score_selected, 0)
            labels = torch.cat(labels, 0)
        else:
            bbox_selected = bbox[selected].tensor
            score_selected = obj_scores[selected]
            labels = bbox_classes[selected]

        return bbox_selected, score_selected, labels

566
567
    def _assign_targets_by_points_inside(self, bboxes_3d: BaseInstance3DBoxes,
                                         points: Tensor) -> Tuple:
568
569
570
571
572
573
574
575
576
577
        """Compute assignment by checking whether point is inside bbox.

        Args:
            bboxes_3d (BaseInstance3DBoxes): Instance of bounding boxes.
            points (torch.Tensor): Points of a batch.

        Returns:
            tuple[torch.Tensor]: Flags indicating whether each point is
                inside bbox and the index of box where each point are in.
        """
578
        if isinstance(bboxes_3d, (LiDARInstance3DBoxes, DepthInstance3DBoxes)):
579
            points_mask = bboxes_3d.points_in_boxes_all(points)
580
581
582
583
584
            assignment = points_mask.argmax(dim=-1)
        else:
            raise NotImplementedError('Unsupported bbox type!')

        return points_mask, assignment