point_rpn_head.py 15 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
4
5
import torch
from mmcv.runner import BaseModule, force_fp32
from torch import nn as nn

6
from mmdet3d.models.builder import build_loss
zhangshilong's avatar
zhangshilong committed
7
8
9
10
11
12
from mmdet3d.models.layers import nms_bev, nms_normal_bev
from mmdet3d.registry import MODELS, TASK_UTILS
from mmdet3d.structures import xywhr2xyxyr
from mmdet3d.structures.bbox_3d import (DepthInstance3DBoxes,
                                        LiDARInstance3DBoxes)
from mmdet.models.utils import multi_apply
13
14


15
@MODELS.register_module()
16
17
18
19
20
21
22
class PointRPNHead(BaseModule):
    """RPN module for PointRCNN.

    Args:
        num_classes (int): Number of classes.
        train_cfg (dict): Train configs.
        test_cfg (dict): Test configs.
23
        pred_layer_cfg (dict, optional): Config of classification and
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
            regression prediction layers. Defaults to None.
        enlarge_width (float, optional): Enlarge bbox for each side to ignore
            close points. Defaults to 0.1.
        cls_loss (dict, optional): Config of direction classification loss.
            Defaults to None.
        bbox_loss (dict, optional): Config of localization loss.
            Defaults to None.
        bbox_coder (dict, optional): Config dict of box coders.
            Defaults to None.
        init_cfg (dict, optional): Config of initialization. Defaults to None.
    """

    def __init__(self,
                 num_classes,
                 train_cfg,
                 test_cfg,
                 pred_layer_cfg=None,
                 enlarge_width=0.1,
                 cls_loss=None,
                 bbox_loss=None,
                 bbox_coder=None,
                 init_cfg=None):
        super().__init__(init_cfg=init_cfg)
        self.num_classes = num_classes
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.enlarge_width = enlarge_width

        # build loss function
        self.bbox_loss = build_loss(bbox_loss)
        self.cls_loss = build_loss(cls_loss)

        # build box coder
zhangshilong's avatar
zhangshilong committed
57
        self.bbox_coder = TASK_UTILS.build(bbox_coder)
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

        # build pred conv
        self.cls_layers = self._make_fc_layers(
            fc_cfg=pred_layer_cfg.cls_linear_channels,
            input_channels=pred_layer_cfg.in_channels,
            output_channels=self._get_cls_out_channels())

        self.reg_layers = self._make_fc_layers(
            fc_cfg=pred_layer_cfg.reg_linear_channels,
            input_channels=pred_layer_cfg.in_channels,
            output_channels=self._get_reg_out_channels())

    def _make_fc_layers(self, fc_cfg, input_channels, output_channels):
        """Make fully connect layers.

        Args:
            fc_cfg (dict): Config of fully connect.
            input_channels (int): Input channels for fc_layers.
            output_channels (int): Input channels for fc_layers.

        Returns:
            nn.Sequential: Fully connect layers.
        """
        fc_layers = []
        c_in = input_channels
        for k in range(0, fc_cfg.__len__()):
            fc_layers.extend([
                nn.Linear(c_in, fc_cfg[k], bias=False),
                nn.BatchNorm1d(fc_cfg[k]),
                nn.ReLU(),
            ])
            c_in = fc_cfg[k]
        fc_layers.append(nn.Linear(c_in, output_channels, bias=True))
        return nn.Sequential(*fc_layers)

    def _get_cls_out_channels(self):
        """Return the channel number of classification outputs."""
        # Class numbers (k) + objectness (1)
        return self.num_classes

    def _get_reg_out_channels(self):
        """Return the channel number of regression outputs."""
        # Bbox classification and regression
        # (center residual (3), size regression (3)
        # torch.cos(yaw) (1), torch.sin(yaw) (1)
        return self.bbox_coder.code_size

    def forward(self, feat_dict):
        """Forward pass.

        Args:
            feat_dict (dict): Feature dict from backbone.

        Returns:
            tuple[list[torch.Tensor]]: Predicted boxes and classification
                scores.
        """
        point_features = feat_dict['fp_features']
        point_features = point_features.permute(0, 2, 1).contiguous()
        batch_size = point_features.shape[0]
        feat_cls = point_features.view(-1, point_features.shape[-1])
        feat_reg = point_features.view(-1, point_features.shape[-1])

        point_cls_preds = self.cls_layers(feat_cls).reshape(
            batch_size, -1, self._get_cls_out_channels())
        point_box_preds = self.reg_layers(feat_reg).reshape(
            batch_size, -1, self._get_reg_out_channels())
125
        return point_box_preds, point_cls_preds
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

    @force_fp32(apply_to=('bbox_preds'))
    def loss(self,
             bbox_preds,
             cls_preds,
             points,
             gt_bboxes_3d,
             gt_labels_3d,
             img_metas=None):
        """Compute loss.

        Args:
            bbox_preds (dict): Predictions from forward of PointRCNN RPN_Head.
            cls_preds (dict): Classification from forward of PointRCNN
                RPN_Head.
            points (list[torch.Tensor]): Input points.
            gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth
                bboxes of each sample.
            gt_labels_3d (list[torch.Tensor]): Labels of each sample.
            img_metas (list[dict], Optional): Contain pcd and img's meta info.
                Defaults to None.

        Returns:
            dict: Losses of PointRCNN RPN module.
        """
        targets = self.get_targets(points, gt_bboxes_3d, gt_labels_3d)
        (bbox_targets, mask_targets, positive_mask, negative_mask,
         box_loss_weights, point_targets) = targets

        # bbox loss
        bbox_loss = self.bbox_loss(bbox_preds, bbox_targets,
                                   box_loss_weights.unsqueeze(-1))
        # calculate semantic loss
        semantic_points = cls_preds.reshape(-1, self.num_classes)
        semantic_targets = mask_targets
        semantic_targets[negative_mask] = self.num_classes
        semantic_points_label = semantic_targets
163
        # for ignore, but now we do not have ignored label
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
        semantic_loss_weight = negative_mask.float() + positive_mask.float()
        semantic_loss = self.cls_loss(semantic_points,
                                      semantic_points_label.reshape(-1),
                                      semantic_loss_weight.reshape(-1))
        semantic_loss /= positive_mask.float().sum()
        losses = dict(bbox_loss=bbox_loss, semantic_loss=semantic_loss)

        return losses

    def get_targets(self, points, gt_bboxes_3d, gt_labels_3d):
        """Generate targets of PointRCNN RPN head.

        Args:
            points (list[torch.Tensor]): Points of each batch.
            gt_bboxes_3d (list[:obj:`BaseInstance3DBoxes`]): Ground truth
                bboxes of each batch.
            gt_labels_3d (list[torch.Tensor]): Labels of each batch.

        Returns:
            tuple[torch.Tensor]: Targets of PointRCNN RPN head.
        """
        # find empty example
        for index in range(len(gt_labels_3d)):
            if len(gt_labels_3d[index]) == 0:
                fake_box = gt_bboxes_3d[index].tensor.new_zeros(
                    1, gt_bboxes_3d[index].tensor.shape[-1])
                gt_bboxes_3d[index] = gt_bboxes_3d[index].new_box(fake_box)
                gt_labels_3d[index] = gt_labels_3d[index].new_zeros(1)

        (bbox_targets, mask_targets, positive_mask, negative_mask,
         point_targets) = multi_apply(self.get_targets_single, points,
                                      gt_bboxes_3d, gt_labels_3d)

        bbox_targets = torch.stack(bbox_targets)
        mask_targets = torch.stack(mask_targets)
        positive_mask = torch.stack(positive_mask)
        negative_mask = torch.stack(negative_mask)
        box_loss_weights = positive_mask / (positive_mask.sum() + 1e-6)

        return (bbox_targets, mask_targets, positive_mask, negative_mask,
                box_loss_weights, point_targets)

    def get_targets_single(self, points, gt_bboxes_3d, gt_labels_3d):
        """Generate targets of PointRCNN RPN head for single batch.

        Args:
            points (torch.Tensor): Points of each batch.
            gt_bboxes_3d (:obj:`BaseInstance3DBoxes`): Ground truth
                boxes of each batch.
            gt_labels_3d (torch.Tensor): Labels of each batch.

        Returns:
            tuple[torch.Tensor]: Targets of ssd3d head.
        """
        gt_bboxes_3d = gt_bboxes_3d.to(points.device)

        valid_gt = gt_labels_3d != -1
        gt_bboxes_3d = gt_bboxes_3d[valid_gt]
        gt_labels_3d = gt_labels_3d[valid_gt]

224
        # transform the bbox coordinate to the point cloud coordinate
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
        gt_bboxes_3d_tensor = gt_bboxes_3d.tensor.clone()
        gt_bboxes_3d_tensor[..., 2] += gt_bboxes_3d_tensor[..., 5] / 2

        points_mask, assignment = self._assign_targets_by_points_inside(
            gt_bboxes_3d, points)
        gt_bboxes_3d_tensor = gt_bboxes_3d_tensor[assignment]
        mask_targets = gt_labels_3d[assignment]

        bbox_targets = self.bbox_coder.encode(gt_bboxes_3d_tensor,
                                              points[..., 0:3], mask_targets)

        positive_mask = (points_mask.max(1)[0] > 0)
        # add ignore_mask
        extend_gt_bboxes_3d = gt_bboxes_3d.enlarged_box(self.enlarge_width)
        points_mask, _ = self._assign_targets_by_points_inside(
            extend_gt_bboxes_3d, points)
        negative_mask = (points_mask.max(1)[0] == 0)

        point_targets = points[..., 0:3]
        return (bbox_targets, mask_targets, positive_mask, negative_mask,
                point_targets)

    def get_bboxes(self,
                   points,
                   bbox_preds,
                   cls_preds,
                   input_metas,
                   rescale=False):
        """Generate bboxes from RPN head predictions.

        Args:
            points (torch.Tensor): Input points.
            bbox_preds (dict): Regression predictions from PointRCNN head.
            cls_preds (dict): Class scores predictions from PointRCNN head.
            input_metas (list[dict]): Point cloud and image's meta info.
            rescale (bool, optional): Whether to rescale bboxes.
                Defaults to False.

        Returns:
            list[tuple[torch.Tensor]]: Bounding boxes, scores and labels.
        """
        sem_scores = cls_preds.sigmoid()
        obj_scores = sem_scores.max(-1)[0]
        object_class = sem_scores.argmax(dim=-1)

        batch_size = sem_scores.shape[0]
        results = list()
        for b in range(batch_size):
            bbox3d = self.bbox_coder.decode(bbox_preds[b], points[b, ..., :3],
                                            object_class[b])
            bbox_selected, score_selected, labels, cls_preds_selected = \
Wenhao Wu's avatar
Wenhao Wu committed
276
277
                self.class_agnostic_nms(obj_scores[b], sem_scores[b], bbox3d,
                                        points[b, ..., :3], input_metas[b])
278
279
280
281
282
283
284
            bbox = input_metas[b]['box_type_3d'](
                bbox_selected.clone(),
                box_dim=bbox_selected.shape[-1],
                with_yaw=True)
            results.append((bbox, score_selected, labels, cls_preds_selected))
        return results

Wenhao Wu's avatar
Wenhao Wu committed
285
286
    def class_agnostic_nms(self, obj_scores, sem_scores, bbox, points,
                           input_meta):
287
288
289
290
291
292
293
294
295
296
297
298
299
        """Class agnostic nms.

        Args:
            obj_scores (torch.Tensor): Objectness score of bounding boxes.
            sem_scores (torch.Tensor): Semantic class score of bounding boxes.
            bbox (torch.Tensor): Predicted bounding boxes.

        Returns:
            tuple[torch.Tensor]: Bounding boxes, scores and labels.
        """
        nms_cfg = self.test_cfg.nms_cfg if not self.training \
            else self.train_cfg.nms_cfg
        if nms_cfg.use_rotate_nms:
300
            nms_func = nms_bev
301
        else:
302
            nms_func = nms_normal_bev
303

Wenhao Wu's avatar
Wenhao Wu committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
        num_bbox = bbox.shape[0]
        bbox = input_meta['box_type_3d'](
            bbox.clone(),
            box_dim=bbox.shape[-1],
            with_yaw=True,
            origin=(0.5, 0.5, 0.5))

        if isinstance(bbox, LiDARInstance3DBoxes):
            box_idx = bbox.points_in_boxes(points)
            box_indices = box_idx.new_zeros([num_bbox + 1])
            box_idx[box_idx == -1] = num_bbox
            box_indices.scatter_add_(0, box_idx.long(),
                                     box_idx.new_ones(box_idx.shape))
            box_indices = box_indices[:-1]
            nonempty_box_mask = box_indices >= 0
        elif isinstance(bbox, DepthInstance3DBoxes):
            box_indices = bbox.points_in_boxes(points)
            nonempty_box_mask = box_indices.T.sum(1) >= 0
        else:
            raise NotImplementedError('Unsupported bbox type!')

325
        bbox = bbox[nonempty_box_mask]
Wenhao Wu's avatar
Wenhao Wu committed
326

327
328
329
330
331
        if self.test_cfg.score_thr is not None:
            score_thr = self.test_cfg.score_thr
            keep = (obj_scores >= score_thr)
            obj_scores = obj_scores[keep]
            sem_scores = sem_scores[keep]
332
            bbox = bbox.tensor[keep]
333
334
335
336

        if obj_scores.shape[0] > 0:
            topk = min(nms_cfg.nms_pre, obj_scores.shape[0])
            obj_scores_nms, indices = torch.topk(obj_scores, k=topk)
337
            bbox_for_nms = xywhr2xyxyr(bbox[indices].bev)
338
339
            sem_scores_nms = sem_scores[indices]

340
            keep = nms_func(bbox_for_nms, obj_scores_nms, nms_cfg.iou_thr)
341
342
            keep = keep[:nms_cfg.nms_post]

343
            bbox_selected = bbox.tensor[indices][keep]
344
345
346
            score_selected = obj_scores_nms[keep]
            cls_preds = sem_scores_nms[keep]
            labels = torch.argmax(cls_preds, -1)
347
348
349
350
351
        else:
            bbox_selected = bbox.tensor
            score_selected = obj_scores.new_zeros([0])
            labels = obj_scores.new_zeros([0])
            cls_preds = obj_scores.new_zeros([0, sem_scores.shape[-1]])
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382

        return bbox_selected, score_selected, labels, cls_preds

    def _assign_targets_by_points_inside(self, bboxes_3d, points):
        """Compute assignment by checking whether point is inside bbox.

        Args:
            bboxes_3d (:obj:`BaseInstance3DBoxes`): Instance of bounding boxes.
            points (torch.Tensor): Points of a batch.

        Returns:
            tuple[torch.Tensor]: Flags indicating whether each point is
                inside bbox and the index of box where each point are in.
        """
        # TODO: align points_in_boxes function in each box_structures
        num_bbox = bboxes_3d.tensor.shape[0]
        if isinstance(bboxes_3d, LiDARInstance3DBoxes):
            assignment = bboxes_3d.points_in_boxes(points[:, 0:3]).long()
            points_mask = assignment.new_zeros(
                [assignment.shape[0], num_bbox + 1])
            assignment[assignment == -1] = num_bbox
            points_mask.scatter_(1, assignment.unsqueeze(1), 1)
            points_mask = points_mask[:, :-1]
            assignment[assignment == num_bbox] = num_bbox - 1
        elif isinstance(bboxes_3d, DepthInstance3DBoxes):
            points_mask = bboxes_3d.points_in_boxes(points)
            assignment = points_mask.argmax(dim=-1)
        else:
            raise NotImplementedError('Unsupported bbox type!')

        return points_mask, assignment