pointnet2_sa_msg.py 7.15 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
3
import torch
from mmcv.cnn import ConvModule
4
from mmcv.runner import auto_fp16
5
6
from torch import nn as nn

zhangshilong's avatar
zhangshilong committed
7
from mmdet3d.models.layers.pointnet_modules import build_sa_module
8
from mmdet3d.registry import MODELS
9
10
11
from .base_pointnet import BasePointNet


12
@MODELS.register_module()
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
class PointNet2SAMSG(BasePointNet):
    """PointNet2 with Multi-scale grouping.

    Args:
        in_channels (int): Input channels of point cloud.
        num_points (tuple[int]): The number of points which each SA
            module samples.
        radii (tuple[float]): Sampling radii of each SA module.
        num_samples (tuple[int]): The number of samples for ball
            query in each SA module.
        sa_channels (tuple[tuple[int]]): Out channels of each mlp in SA module.
        aggregation_channels (tuple[int]): Out channels of aggregation
            multi-scale grouping features.
        fps_mods (tuple[int]): Mod of FPS for each SA module.
        fps_sample_range_lists (tuple[tuple[int]]): The number of sampling
            points which each SA module samples.
29
        dilated_group (tuple[bool]): Whether to use dilated ball query for
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
        out_indices (Sequence[int]): Output from which stages.
        norm_cfg (dict): Config of normalization layer.
        sa_cfg (dict): Config of set abstraction module, which may contain
            the following keys and values:

            - pool_mod (str): Pool method ('max' or 'avg') for SA modules.
            - use_xyz (bool): Whether to use xyz as a part of features.
            - normalize_xyz (bool): Whether to normalize xyz with radii in
              each SA module.
    """

    def __init__(self,
                 in_channels,
                 num_points=(2048, 1024, 512, 256),
                 radii=((0.2, 0.4, 0.8), (0.4, 0.8, 1.6), (1.6, 3.2, 4.8)),
                 num_samples=((32, 32, 64), (32, 32, 64), (32, 32, 32)),
                 sa_channels=(((16, 16, 32), (16, 16, 32), (32, 32, 64)),
                              ((64, 64, 128), (64, 64, 128), (64, 96, 128)),
                              ((128, 128, 256), (128, 192, 256), (128, 256,
                                                                  256))),
                 aggregation_channels=(64, 128, 256),
                 fps_mods=(('D-FPS'), ('FS'), ('F-FPS', 'D-FPS')),
                 fps_sample_range_lists=((-1), (-1), (512, -1)),
53
                 dilated_group=(True, True, True),
54
55
56
57
58
59
                 out_indices=(2, ),
                 norm_cfg=dict(type='BN2d'),
                 sa_cfg=dict(
                     type='PointSAModuleMSG',
                     pool_mod='max',
                     use_xyz=True,
60
61
62
                     normalize_xyz=False),
                 init_cfg=None):
        super().__init__(init_cfg=init_cfg)
63
64
65
66
        self.num_sa = len(sa_channels)
        self.out_indices = out_indices
        assert max(out_indices) < self.num_sa
        assert len(num_points) == len(radii) == len(num_samples) == len(
67
68
69
70
71
            sa_channels)
        if aggregation_channels is not None:
            assert len(sa_channels) == len(aggregation_channels)
        else:
            aggregation_channels = [None] * len(sa_channels)
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

        self.SA_modules = nn.ModuleList()
        self.aggregation_mlps = nn.ModuleList()
        sa_in_channel = in_channels - 3  # number of channels without xyz
        skip_channel_list = [sa_in_channel]

        for sa_index in range(self.num_sa):
            cur_sa_mlps = list(sa_channels[sa_index])
            sa_out_channel = 0
            for radius_index in range(len(radii[sa_index])):
                cur_sa_mlps[radius_index] = [sa_in_channel] + list(
                    cur_sa_mlps[radius_index])
                sa_out_channel += cur_sa_mlps[radius_index][-1]

            if isinstance(fps_mods[sa_index], tuple):
                cur_fps_mod = list(fps_mods[sa_index])
            else:
                cur_fps_mod = list([fps_mods[sa_index]])

            if isinstance(fps_sample_range_lists[sa_index], tuple):
                cur_fps_sample_range_list = list(
                    fps_sample_range_lists[sa_index])
            else:
                cur_fps_sample_range_list = list(
                    [fps_sample_range_lists[sa_index]])

            self.SA_modules.append(
                build_sa_module(
                    num_point=num_points[sa_index],
                    radii=radii[sa_index],
                    sample_nums=num_samples[sa_index],
                    mlp_channels=cur_sa_mlps,
                    fps_mod=cur_fps_mod,
                    fps_sample_range_list=cur_fps_sample_range_list,
106
                    dilated_group=dilated_group[sa_index],
107
108
109
110
                    norm_cfg=norm_cfg,
                    cfg=sa_cfg,
                    bias=True))
            skip_channel_list.append(sa_out_channel)
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

            cur_aggregation_channel = aggregation_channels[sa_index]
            if cur_aggregation_channel is None:
                self.aggregation_mlps.append(None)
                sa_in_channel = sa_out_channel
            else:
                self.aggregation_mlps.append(
                    ConvModule(
                        sa_out_channel,
                        cur_aggregation_channel,
                        conv_cfg=dict(type='Conv1d'),
                        norm_cfg=dict(type='BN1d'),
                        kernel_size=1,
                        bias=True))
                sa_in_channel = cur_aggregation_channel
126

127
    @auto_fp16(apply_to=('points', ))
128
129
130
131
132
133
134
135
136
137
138
139
140
    def forward(self, points):
        """Forward pass.

        Args:
            points (torch.Tensor): point coordinates with features,
                with shape (B, N, 3 + input_feature_dim).

        Returns:
            dict[str, torch.Tensor]: Outputs of the last SA module.

                - sa_xyz (torch.Tensor): The coordinates of sa features.
                - sa_features (torch.Tensor): The features from the
                    last Set Aggregation Layers.
141
                - sa_indices (torch.Tensor): Indices of the
142
143
144
145
146
147
148
149
150
151
152
153
                    input points.
        """
        xyz, features = self._split_point_feats(points)

        batch, num_points = xyz.shape[:2]
        indices = xyz.new_tensor(range(num_points)).unsqueeze(0).repeat(
            batch, 1).long()

        sa_xyz = [xyz]
        sa_features = [features]
        sa_indices = [indices]

154
155
156
        out_sa_xyz = [xyz]
        out_sa_features = [features]
        out_sa_indices = [indices]
157

158
159
160
        for i in range(self.num_sa):
            cur_xyz, cur_features, cur_indices = self.SA_modules[i](
                sa_xyz[i], sa_features[i])
161
162
            if self.aggregation_mlps[i] is not None:
                cur_features = self.aggregation_mlps[i](cur_features)
163
164
165
166
167
168
169
170
171
172
173
174
175
            sa_xyz.append(cur_xyz)
            sa_features.append(cur_features)
            sa_indices.append(
                torch.gather(sa_indices[-1], 1, cur_indices.long()))
            if i in self.out_indices:
                out_sa_xyz.append(sa_xyz[-1])
                out_sa_features.append(sa_features[-1])
                out_sa_indices.append(sa_indices[-1])

        return dict(
            sa_xyz=out_sa_xyz,
            sa_features=out_sa_features,
            sa_indices=out_sa_indices)