formating.py 7.96 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangshilong's avatar
zhangshilong committed
2
from typing import List, Sequence, Union
jshilong's avatar
jshilong committed
3

zhangshilong's avatar
zhangshilong committed
4
import mmcv
zhangwenwei's avatar
zhangwenwei committed
5
import numpy as np
zhangshilong's avatar
zhangshilong committed
6
import torch
jshilong's avatar
jshilong committed
7
8
from mmcv import BaseTransform
from mmengine import InstanceData
zhangshilong's avatar
zhangshilong committed
9
from numpy import dtype
zhangwenwei's avatar
zhangwenwei committed
10

11
from mmdet3d.registry import TRANSFORMS
zhangshilong's avatar
zhangshilong committed
12
13
from mmdet3d.structures import BaseInstance3DBoxes, Det3DDataSample, PointData
from mmdet3d.structures.points import BasePoints
zhangwenwei's avatar
zhangwenwei committed
14
15


zhangshilong's avatar
zhangshilong committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
def to_tensor(
    data: Union[torch.Tensor, np.ndarray, Sequence, int,
                float]) -> torch.Tensor:
    """Convert objects of various python types to :obj:`torch.Tensor`.

    Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
    :class:`Sequence`, :class:`int` and :class:`float`.

    Args:
        data (torch.Tensor | numpy.ndarray | Sequence | int | float): Data to
            be converted.

    Returns:
        torch.Tensor: the converted data.
    """

    if isinstance(data, torch.Tensor):
        return data
    elif isinstance(data, np.ndarray):
        if data.dtype is dtype('float64'):
            data = data.astype(np.float32)
        return torch.from_numpy(data)
    elif isinstance(data, Sequence) and not mmcv.is_str(data):
        return torch.tensor(data)
    elif isinstance(data, int):
        return torch.LongTensor([data])
    elif isinstance(data, float):
        return torch.FloatTensor([data])
    else:
        raise TypeError(f'type {type(data)} cannot be converted to tensor.')


48
@TRANSFORMS.register_module()
jshilong's avatar
jshilong committed
49
50
51
52
53
54
55
class Pack3DDetInputs(BaseTransform):
    INPUTS_KEYS = ['points', 'img']
    INSTANCEDATA_3D_KEYS = [
        'gt_bboxes_3d', 'gt_labels_3d', 'attr_labels', 'depths', 'centers_2d'
    ]
    INSTANCEDATA_2D_KEYS = [
        'gt_bboxes',
zhangshilong's avatar
zhangshilong committed
56
        'gt_bboxes_labels',
jshilong's avatar
jshilong committed
57
58
59
60
61
62
    ]

    SEG_KEYS = [
        'gt_seg_map', 'pts_instance_mask', 'pts_semantic_mask',
        'gt_semantic_seg'
    ]
zhangwenwei's avatar
zhangwenwei committed
63

jshilong's avatar
jshilong committed
64
65
66
    def __init__(
        self,
        keys: dict,
jshilong's avatar
jshilong committed
67
        meta_keys: dict = ('img_path', 'ori_shape', 'img_shape', 'lidar2img',
jshilong's avatar
jshilong committed
68
69
70
71
                           'depth2img', 'cam2img', 'pad_shape', 'scale_factor',
                           'flip', 'pcd_horizontal_flip', 'pcd_vertical_flip',
                           'box_mode_3d', 'box_type_3d', 'img_norm_cfg',
                           'pcd_trans', 'sample_idx', 'pcd_scale_factor',
jshilong's avatar
jshilong committed
72
73
74
                           'pcd_rotation', 'pcd_rotation_angle', 'lidar_path',
                           'transformation_3d_flow', 'trans_mat',
                           'affine_aug')):
jshilong's avatar
jshilong committed
75
76
        self.keys = keys
        self.meta_keys = meta_keys
zhangwenwei's avatar
zhangwenwei committed
77

jshilong's avatar
jshilong committed
78
79
80
81
    def _remove_prefix(self, key: str) -> str:
        if key.startswith('gt_'):
            key = key[3:]
        return key
zhangwenwei's avatar
zhangwenwei committed
82

jshilong's avatar
jshilong committed
83
84
85
86
    def transform(self, results: Union[dict,
                                       List[dict]]) -> Union[dict, List[dict]]:
        """Method to pack the input data. when the value in this dict is a
        list, it usually is in Augmentations Testing.
87
88

        Args:
jshilong's avatar
jshilong committed
89
            results (dict | list[dict]): Result dict from the data pipeline.
90
91

        Returns:
jshilong's avatar
jshilong committed
92
            dict | List[dict]:
jshilong's avatar
jshilong committed
93
94
95
96
97
98
99
100
101

            - 'inputs' (dict): The forward data of models. It usually contains
              following keys:

                - points
                - img

            - 'data_sample' (obj:`Det3DDataSample`): The annotation info of the
              sample.
102
        """
jshilong's avatar
jshilong committed
103
104
        # augtest
        if isinstance(results, list):
105
106
107
            if len(results) == 1:
                # simple test
                return self.pack_single_results(results[0])
jshilong's avatar
jshilong committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
            pack_results = []
            for single_result in results:
                pack_results.append(self.pack_single_results(single_result))
            return pack_results
        # norm training and simple testing
        elif isinstance(results, dict):
            return self.pack_single_results(results)
        else:
            raise NotImplementedError

    def pack_single_results(self, results):
        """Method to pack the single input data. when the value in this dict is
        a list, it usually is in Augmentations Testing.

        Args:
            results (dict): Result dict from the data pipeline.

        Returns:
            dict: A dict contains
jshilong's avatar
jshilong committed
127

jshilong's avatar
jshilong committed
128
129
130
131
132
133
134
135
136
            - 'inputs' (dict): The forward data of models. It usually contains
              following keys:

                - points
                - img

            - 'data_sample' (obj:`Det3DDataSample`): The annotation info of the
              sample.
        """
jshilong's avatar
jshilong committed
137
138
        # Format 3D data
        if 'points' in results:
jshilong's avatar
jshilong committed
139
140
            if isinstance(results['points'], BasePoints):
                results['points'] = results['points'].tensor
jshilong's avatar
jshilong committed
141

zhangwenwei's avatar
zhangwenwei committed
142
143
144
145
146
        if 'img' in results:
            if isinstance(results['img'], list):
                # process multiple imgs in single frame
                imgs = [img.transpose(2, 0, 1) for img in results['img']]
                imgs = np.ascontiguousarray(np.stack(imgs, axis=0))
jshilong's avatar
jshilong committed
147
                results['img'] = to_tensor(imgs)
zhangwenwei's avatar
zhangwenwei committed
148
            else:
jshilong's avatar
jshilong committed
149
150
151
                img = results['img']
                if len(img.shape) < 3:
                    img = np.expand_dims(img, -1)
152
153
                results['img'] = to_tensor(
                    np.ascontiguousarray(img.transpose(2, 0, 1)))
jshilong's avatar
jshilong committed
154

zhangwenwei's avatar
zhangwenwei committed
155
        for key in [
156
                'proposals', 'gt_bboxes', 'gt_bboxes_ignore', 'gt_labels',
zhangshilong's avatar
zhangshilong committed
157
158
                'gt_bboxes_labels', 'attr_labels', 'pts_instance_mask',
                'pts_semantic_mask', 'centers_2d', 'depths', 'gt_labels_3d'
zhangwenwei's avatar
zhangwenwei committed
159
160
161
162
        ]:
            if key not in results:
                continue
            if isinstance(results[key], list):
jshilong's avatar
jshilong committed
163
                results[key] = [to_tensor(res) for res in results[key]]
zhangwenwei's avatar
zhangwenwei committed
164
            else:
jshilong's avatar
jshilong committed
165
                results[key] = to_tensor(results[key])
166
        if 'gt_bboxes_3d' in results:
jshilong's avatar
jshilong committed
167
168
            if not isinstance(results['gt_bboxes_3d'], BaseInstance3DBoxes):
                results['gt_bboxes_3d'] = to_tensor(results['gt_bboxes_3d'])
169

zhangwenwei's avatar
zhangwenwei committed
170
        if 'gt_semantic_seg' in results:
jshilong's avatar
jshilong committed
171
172
173
174
            results['gt_semantic_seg'] = to_tensor(
                results['gt_semantic_seg'][None])
        if 'gt_seg_map' in results:
            results['gt_seg_map'] = results['gt_seg_map'][None, ...]
wangtai's avatar
wangtai committed
175

jshilong's avatar
jshilong committed
176
177
178
        data_sample = Det3DDataSample()
        gt_instances_3d = InstanceData()
        gt_instances = InstanceData()
ZCMax's avatar
ZCMax committed
179
        gt_pts_seg = PointData()
zhangwenwei's avatar
zhangwenwei committed
180

zhangwenwei's avatar
zhangwenwei committed
181
        img_metas = {}
zhangwenwei's avatar
zhangwenwei committed
182
183
        for key in self.meta_keys:
            if key in results:
zhangwenwei's avatar
zhangwenwei committed
184
                img_metas[key] = results[key]
jshilong's avatar
jshilong committed
185
        data_sample.set_metainfo(img_metas)
186

jshilong's avatar
jshilong committed
187
        inputs = {}
zhangwenwei's avatar
zhangwenwei committed
188
        for key in self.keys:
jshilong's avatar
jshilong committed
189
190
191
192
193
194
            if key in results:
                if key in self.INPUTS_KEYS:
                    inputs[key] = results[key]
                elif key in self.INSTANCEDATA_3D_KEYS:
                    gt_instances_3d[self._remove_prefix(key)] = results[key]
                elif key in self.INSTANCEDATA_2D_KEYS:
zhangshilong's avatar
zhangshilong committed
195
196
197
198
                    if key == 'gt_bboxes_labels':
                        gt_instances['labels'] = results[key]
                    else:
                        gt_instances[self._remove_prefix(key)] = results[key]
jshilong's avatar
jshilong committed
199
                elif key in self.SEG_KEYS:
ZCMax's avatar
ZCMax committed
200
                    gt_pts_seg[self._remove_prefix(key)] = results[key]
jshilong's avatar
jshilong committed
201
202
203
204
205
206
207
208
                else:
                    raise NotImplementedError(f'Please modified '
                                              f'`Pack3DDetInputs` '
                                              f'to put {key} to '
                                              f'corresponding field')

        data_sample.gt_instances_3d = gt_instances_3d
        data_sample.gt_instances = gt_instances
ZCMax's avatar
ZCMax committed
209
        data_sample.gt_pts_seg = gt_pts_seg
jshilong's avatar
jshilong committed
210
211
212
213
214
215
        if 'eval_ann_info' in results:
            data_sample.eval_ann_info = results['eval_ann_info']
        else:
            data_sample.eval_ann_info = None

        packed_results = dict()
jshilong's avatar
jshilong committed
216
217
218
219
220
221
        packed_results['data_sample'] = data_sample
        packed_results['inputs'] = inputs

        return packed_results

    def __repr__(self) -> str:
zhangwenwei's avatar
zhangwenwei committed
222
        repr_str = self.__class__.__name__
jshilong's avatar
jshilong committed
223
224
        repr_str += f'(keys={self.keys})'
        repr_str += f'(meta_keys={self.meta_keys})'
zhangwenwei's avatar
zhangwenwei committed
225
        return repr_str