convert_utils.py 9.27 KB
Newer Older
ZCMax's avatar
ZCMax committed
1
2
3
4
5
6
7
8
9
# Copyright (c) OpenMMLab. All rights reserved.
from collections import OrderedDict
from typing import List, Tuple, Union

import numpy as np
from nuscenes.utils.geometry_utils import view_points
from pyquaternion import Quaternion
from shapely.geometry import MultiPoint, box

zhangshilong's avatar
zhangshilong committed
10
from mmdet3d.structures import points_cam2img
ZCMax's avatar
ZCMax committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

nus_categories = ('car', 'truck', 'trailer', 'bus', 'construction_vehicle',
                  'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone',
                  'barrier')

nus_attributes = ('cycle.with_rider', 'cycle.without_rider',
                  'pedestrian.moving', 'pedestrian.standing',
                  'pedestrian.sitting_lying_down', 'vehicle.moving',
                  'vehicle.parked', 'vehicle.stopped', 'None')
NameMapping = {
    'movable_object.barrier': 'barrier',
    'vehicle.bicycle': 'bicycle',
    'vehicle.bus.bendy': 'bus',
    'vehicle.bus.rigid': 'bus',
    'vehicle.car': 'car',
    'vehicle.construction': 'construction_vehicle',
    'vehicle.motorcycle': 'motorcycle',
    'human.pedestrian.adult': 'pedestrian',
    'human.pedestrian.child': 'pedestrian',
    'human.pedestrian.construction_worker': 'pedestrian',
    'human.pedestrian.police_officer': 'pedestrian',
    'movable_object.trafficcone': 'traffic_cone',
    'vehicle.trailer': 'trailer',
    'vehicle.truck': 'truck'
}


def get_2d_boxes(nusc, sample_data_token: str, visibilities: List[str]):
    """Get the 2D annotation records for a given `sample_data_token`.

    Args:
        sample_data_token (str): Sample data token belonging to a camera
            keyframe.
        visibilities (list[str]): Visibility filter.

    Return:
        list[dict]: List of 2D annotation record that belongs to the input
            `sample_data_token`.
    """

    # Get the sample data and the sample corresponding to that sample data.
    sd_rec = nusc.get('sample_data', sample_data_token)

    assert sd_rec[
        'sensor_modality'] == 'camera', 'Error: get_2d_boxes only works' \
        ' for camera sample_data!'
    if not sd_rec['is_key_frame']:
        raise ValueError(
            'The 2D re-projections are available only for keyframes.')

    s_rec = nusc.get('sample', sd_rec['sample_token'])

    # Get the calibrated sensor and ego pose
    # record to get the transformation matrices.
    cs_rec = nusc.get('calibrated_sensor', sd_rec['calibrated_sensor_token'])
    pose_rec = nusc.get('ego_pose', sd_rec['ego_pose_token'])
    camera_intrinsic = np.array(cs_rec['camera_intrinsic'])

    # Get all the annotation with the specified visibilties.
    ann_recs = [
        nusc.get('sample_annotation', token) for token in s_rec['anns']
    ]
    ann_recs = [
        ann_rec for ann_rec in ann_recs
        if (ann_rec['visibility_token'] in visibilities)
    ]

    repro_recs = []

    for ann_rec in ann_recs:
        # Augment sample_annotation with token information.
        ann_rec['sample_annotation_token'] = ann_rec['token']
        ann_rec['sample_data_token'] = sample_data_token

        # Get the box in global coordinates.
        box = nusc.get_box(ann_rec['token'])

        # Move them to the ego-pose frame.
        box.translate(-np.array(pose_rec['translation']))
        box.rotate(Quaternion(pose_rec['rotation']).inverse)

        # Move them to the calibrated sensor frame.
        box.translate(-np.array(cs_rec['translation']))
        box.rotate(Quaternion(cs_rec['rotation']).inverse)

        # Filter out the corners that are not in front of the calibrated
        # sensor.
        corners_3d = box.corners()
        in_front = np.argwhere(corners_3d[2, :] > 0).flatten()
        corners_3d = corners_3d[:, in_front]

        # Project 3d box to 2d.
        corner_coords = view_points(corners_3d, camera_intrinsic,
                                    True).T[:, :2].tolist()

        # Keep only corners that fall within the image.
        final_coords = post_process_coords(corner_coords)

        # Skip if the convex hull of the re-projected corners
        # does not intersect the image canvas.
        if final_coords is None:
            continue
        else:
            min_x, min_y, max_x, max_y = final_coords

        # Generate dictionary record to be included in the .json file.
        repro_rec = generate_record(ann_rec, min_x, min_y, max_x, max_y,
                                    sample_data_token, sd_rec['filename'])

        # if repro_rec is None, we do not append it into repre_recs
        if repro_rec is not None:
            loc = box.center.tolist()

            dim = box.wlh
            dim[[0, 1, 2]] = dim[[1, 2, 0]]  # convert wlh to our lhw
            dim = dim.tolist()

            rot = box.orientation.yaw_pitch_roll[0]
            rot = [-rot]  # convert the rot to our cam coordinate

            global_velo2d = nusc.box_velocity(box.token)[:2]
            global_velo3d = np.array([*global_velo2d, 0.0])
            e2g_r_mat = Quaternion(pose_rec['rotation']).rotation_matrix
            c2e_r_mat = Quaternion(cs_rec['rotation']).rotation_matrix
            cam_velo3d = global_velo3d @ np.linalg.inv(
                e2g_r_mat).T @ np.linalg.inv(c2e_r_mat).T
            velo = cam_velo3d[0::2].tolist()

            repro_rec['bbox_3d'] = loc + dim + rot
            repro_rec['velocity'] = velo

            center_3d = np.array(loc).reshape([1, 3])
            center_2d_with_depth = points_cam2img(
                center_3d, camera_intrinsic, with_depth=True)
            center_2d_with_depth = center_2d_with_depth.squeeze().tolist()
            repro_rec['center_2d'] = center_2d_with_depth[:2]
            repro_rec['depth'] = center_2d_with_depth[2]
            # normalized center2D + depth
            # if samples with depth < 0 will be removed
            if repro_rec['depth'] <= 0:
                continue

            ann_token = nusc.get('sample_annotation',
                                 box.token)['attribute_tokens']
            if len(ann_token) == 0:
                attr_name = 'None'
            else:
                attr_name = nusc.get('attribute', ann_token[0])['name']
            attr_id = nus_attributes.index(attr_name)
            # repro_rec['attribute_name'] = attr_name
            repro_rec['attr_label'] = attr_id

            repro_recs.append(repro_rec)

    return repro_recs


def post_process_coords(
    corner_coords: List, imsize: Tuple[int, int] = (1600, 900)
) -> Union[Tuple[float, float, float, float], None]:
    """Get the intersection of the convex hull of the reprojected bbox corners
    and the image canvas, return None if no intersection.

    Args:
        corner_coords (list[int]): Corner coordinates of reprojected
            bounding box.
        imsize (tuple[int]): Size of the image canvas.

    Return:
        tuple [float]: Intersection of the convex hull of the 2D box
            corners and the image canvas.
    """
    polygon_from_2d_box = MultiPoint(corner_coords).convex_hull
    img_canvas = box(0, 0, imsize[0], imsize[1])

    if polygon_from_2d_box.intersects(img_canvas):
        img_intersection = polygon_from_2d_box.intersection(img_canvas)
        intersection_coords = np.array(
            [coord for coord in img_intersection.exterior.coords])

        min_x = min(intersection_coords[:, 0])
        min_y = min(intersection_coords[:, 1])
        max_x = max(intersection_coords[:, 0])
        max_y = max(intersection_coords[:, 1])

        return min_x, min_y, max_x, max_y
    else:
        return None


def generate_record(ann_rec: dict, x1: float, y1: float, x2: float, y2: float,
                    sample_data_token: str, filename: str) -> OrderedDict:
    """Generate one 2D annotation record given various information on top of
    the 2D bounding box coordinates.

    Args:
        ann_rec (dict): Original 3d annotation record.
        x1 (float): Minimum value of the x coordinate.
        y1 (float): Minimum value of the y coordinate.
        x2 (float): Maximum value of the x coordinate.
        y2 (float): Maximum value of the y coordinate.
        sample_data_token (str): Sample data token.
        filename (str):The corresponding image file where the annotation
            is present.

    Returns:
        dict: A sample mono3D annotation record.
            - bbox_label (int): 2d box label id
            - bbox_label_3d (int): 3d box label id
            - bbox (list[float]): left x, top y, right x, bottom y
                of 2d box
            - bbox_3d_isvalid (bool): whether the box is valid
    """
    repro_rec = OrderedDict()
    repro_rec['sample_data_token'] = sample_data_token
    coco_rec = dict()

    relevant_keys = [
        'attribute_tokens',
        'category_name',
        'instance_token',
        'next',
        'num_lidar_pts',
        'num_radar_pts',
        'prev',
        'sample_annotation_token',
        'sample_data_token',
        'visibility_token',
    ]

    for key, value in ann_rec.items():
        if key in relevant_keys:
            repro_rec[key] = value

    repro_rec['bbox_corners'] = [x1, y1, x2, y2]
    repro_rec['filename'] = filename

    if repro_rec['category_name'] not in NameMapping:
        return None
    cat_name = NameMapping[repro_rec['category_name']]
    coco_rec['bbox_label'] = nus_categories.index(cat_name)
    coco_rec['bbox_label_3d'] = nus_categories.index(cat_name)
    coco_rec['bbox'] = [x1, y1, x2, y2]
    coco_rec['bbox_3d_isvalid'] = True

    return coco_rec