semantickitti.py 5.96 KB
Newer Older
1
2
3
4
5
# For SemanticKitti we usually do 19-class segmentation.
# For labels_map we follow the uniform format of MMDetection & MMSegmentation
# i.e. we consider the unlabeled class as the last one, which is different
# from the original implementation of some methods e.g. Cylinder3D.
dataset_type = 'SemanticKittiDataset'
6
7
data_root = 'data/semantickitti/'
class_names = [
8
9
10
    'car', 'bicycle', 'motorcycle', 'truck', 'bus', 'person', 'bicyclist',
    'motorcyclist', 'road', 'parking', 'sidewalk', 'other-ground', 'building',
    'fence', 'vegetation', 'trunck', 'terrian', 'pole', 'traffic-sign'
11
12
]
labels_map = {
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    0: 19,  # "unlabeled"
    1: 19,  # "outlier" mapped to "unlabeled" --------------mapped
    10: 0,  # "car"
    11: 1,  # "bicycle"
    13: 4,  # "bus" mapped to "other-vehicle" --------------mapped
    15: 2,  # "motorcycle"
    16: 4,  # "on-rails" mapped to "other-vehicle" ---------mapped
    18: 3,  # "truck"
    20: 4,  # "other-vehicle"
    30: 5,  # "person"
    31: 6,  # "bicyclist"
    32: 7,  # "motorcyclist"
    40: 8,  # "road"
    44: 9,  # "parking"
    48: 10,  # "sidewalk"
    49: 11,  # "other-ground"
    50: 12,  # "building"
    51: 13,  # "fence"
    52: 19,  # "other-structure" mapped to "unlabeled" ------mapped
    60: 8,  # "lane-marking" to "road" ---------------------mapped
    70: 14,  # "vegetation"
    71: 15,  # "trunk"
    72: 16,  # "terrain"
    80: 17,  # "pole"
    81: 18,  # "traffic-sign"
    99: 19,  # "other-object" to "unlabeled" ----------------mapped
    252: 0,  # "moving-car" to "car" ------------------------mapped
    253: 6,  # "moving-bicyclist" to "bicyclist" ------------mapped
    254: 5,  # "moving-person" to "person" ------------------mapped
    255: 7,  # "moving-motorcyclist" to "motorcyclist" ------mapped
    256: 4,  # "moving-on-rails" mapped to "other-vehic------mapped
    257: 4,  # "moving-bus" mapped to "other-vehicle" -------mapped
    258: 3,  # "moving-truck" to "truck" --------------------mapped
    259: 4  # "moving-other"-vehicle to "other-vehicle"-----mapped
47
48
49
}

metainfo = dict(
50
    classes=class_names, seg_label_mapping=labels_map, max_label=259)
51
52
53

input_modality = dict(use_lidar=True, use_camera=False)

54
55
56
57
58
59
60
61
# Example to use different file client
# Method 1: simply set the data root and let the file I/O module
# automatically infer from prefix (not support LMDB and Memcache yet)

# data_root = 's3://openmmlab/datasets/detection3d/semantickitti/'

# Method 2: Use backend_args, file_client_args in versions before 1.1.0rc4
# backend_args = dict(
62
63
#     backend='petrel',
#     path_mapping=dict({
64
65
66
67
#         './data/': 's3://openmmlab/datasets/detection3d/',
#          'data/': 's3://openmmlab/datasets/detection3d/'
#      }))
backend_args = None
68
69
70
71
72
73
74

train_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=4,
        use_dim=4,
75
        backend_args=backend_args),
76
77
    dict(
        type='LoadAnnotations3D',
78
79
        with_bbox_3d=False,
        with_label_3d=False,
80
        with_seg_3d=True,
81
        seg_3d_dtype='np.int32',
82
        seg_offset=2**16,
83
84
        dataset_type='semantickitti',
        backend_args=backend_args),
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    dict(type='PointSegClassMapping', ),
    dict(
        type='RandomFlip3D',
        sync_2d=False,
        flip_ratio_bev_horizontal=0.5,
        flip_ratio_bev_vertical=0.5),
    dict(
        type='GlobalRotScaleTrans',
        rot_range=[-0.78539816, 0.78539816],
        scale_ratio_range=[0.95, 1.05],
        translation_std=[0.1, 0.1, 0.1],
    ),
    dict(type='Pack3DDetInputs', keys=['points', 'pts_semantic_mask'])
]
test_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=4,
        use_dim=4,
105
        backend_args=backend_args),
106
107
    dict(
        type='LoadAnnotations3D',
108
109
        with_bbox_3d=False,
        with_label_3d=False,
110
        with_seg_3d=True,
111
        seg_3d_dtype='np.int32',
112
        seg_offset=2**16,
113
114
        dataset_type='semantickitti',
        backend_args=backend_args),
115
116
117
118
119
120
121
122
123
124
125
    dict(type='PointSegClassMapping', ),
    dict(type='Pack3DDetInputs', keys=['points', 'pts_semantic_mask'])
]
# construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client)
eval_pipeline = [
    dict(
        type='LoadPointsFromFile',
        coord_type='LIDAR',
        load_dim=4,
        use_dim=4,
126
        backend_args=backend_args),
127
128
    dict(
        type='LoadAnnotations3D',
129
130
        with_bbox_3d=False,
        with_label_3d=False,
131
        with_seg_3d=True,
132
        seg_3d_dtype='np.int32',
133
        seg_offset=2**16,
134
135
        dataset_type='semantickitti',
        backend_args=backend_args),
136
137
138
139
140
    dict(type='PointSegClassMapping', ),
    dict(type='Pack3DDetInputs', keys=['points', 'pts_semantic_mask'])
]

train_dataloader = dict(
141
    batch_size=2,
142
143
144
145
146
147
148
149
    num_workers=4,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=dict(
        type='RepeatDataset',
        times=1,
        dataset=dict(
            type=dataset_type,
            data_root=data_root,
150
            ann_file='semantickitti_infos_train.pkl',
151
152
            pipeline=train_pipeline,
            metainfo=metainfo,
153
            modality=input_modality,
154
            ignore_index=19,
155
            backend_args=backend_args)),
156
157
158
159
160
161
162
163
164
165
166
167
)

test_dataloader = dict(
    batch_size=1,
    num_workers=1,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type='RepeatDataset',
        times=1,
        dataset=dict(
            type=dataset_type,
            data_root=data_root,
168
            ann_file='semantickitti_infos_val.pkl',
169
170
171
            pipeline=test_pipeline,
            metainfo=metainfo,
            modality=input_modality,
172
            ignore_index=19,
173
            test_mode=True,
174
            backend_args=backend_args)),
175
176
177
178
179
180
)

val_dataloader = test_dataloader

val_evaluator = dict(type='SegMetric')
test_evaluator = val_evaluator
181
182
183
184

vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
    type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer')